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Impurity induced spin texture in quantum critical 2D antiferromagnets
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We describe the uniform and staggered magnetization distributions around a vacancy in a quan-
tum critical two-dimensional S = 1/2 antiferromagnet. The distributions are delocalized across the
entire sample with a universal functional form arising from an uncompensated Berry phase. The
numerical results, obtained using quantum Monte Carlo simulations of the Heisenberg model on bi-
layer lattices with up to ≈ 105 spins, are in good agreement with the proposed scaling structure. We
determine the exponent η′ = 0.40 ± 0.02, which governs both the staggered and uniform magnetic
structure away from the impurity and also controls the impurity spin dynamics.

PACS numbers: 75.10.Jm, 75.10.Nr, 75.40.Cx, 75.40.Mg

Some of the most interesting physics of strongly inter-
acting quantum systems arises in their response to im-
purities. Metallic systems exhibit the Kondo effect, and
much rich physics has been discovered in their response
to a magnetic impurity which carries a localized spin S.
In contrast, Mott insulators have a particularly rich re-
sponse to non-magnetic impurities. For example, the
spin-gap compound CuGeO3, which consists of dimerized
pairs of S = 1/2 Cu ions locked into S = 0 valence bonds,
acquires magnetic order upon replacing a very small den-
sity of the Cu with spinless Zn ions [1]; it is believed that
an unpaired Cu spin is localized in the vicinity of the Zn
impurity, and behaves like a localized S = 1/2 moment.
The cuprate superconductors have also seen a variety of
studies [2, 3, 4, 5] of the spin and charge correlations in
the vicinity of Zn ions replacing the Cu ions within a su-
perconducting layer; here there is also an unpaired spin,
but its spatial distribution and dynamics are not fully
understood.

This paper will explore the effect of a non-magnetic
impurity on a quantum critical Mott insulator, at the
boundary between a magnetically ordered and a spin-gap
state. We will describe the fate of the spatial magnetic
structure of the localized impurity in the spin-gap state,
as this state is tuned to the quantum critical point. We
find that the strongly-interacting gapless excitations in
the bulk lead to a non-trivial and universal spatial form,
with power-law decay of spin correlations away from the
impurity. We will present new numerical and analytic re-
sults on the spatial spin distribution, building upon the
scaling structure proposed in an earlier field-theoretical
analysis [6, 7]. Our results are of relevance to Mott in-
sulators which can be tuned across the quantum phase
transition. They also shed light on the cuprates, which
are are in the vicinity of a magnetic ordering quantum
phase transition.

In our numerical investigations of a model spin-gap
Mott insulator, we consider the spin-1/2 Heisenberg an-
tiferromagnet on a bilayer lattice. It is defined by the

Hamiltonian

H = J
∑

⟨i,j⟩

S1,i · S1,j + J⊥

∑

i

S1,i · S2,i, (1)

where Sa,i is a spin-1/2 operator at site i on layer a = 1, 2,
and ⟨i, j⟩ denotes a pair of nearest-neighbor sites on an
L× L open-boundary square lattice. With intralayer in-
teractions in only one of the layers (a Kondo lattice), as
shown in Fig. 1, the model has a quantum critical point
when the ratio g = J⊥/J is gc = 1.3888(1) [8], with
the spin-gap state present for g > gc, and an antifer-
romagnetically ordered state for g < gc. There is con-
vincing evidence [8, 9] that this quantum critical point
is described by the Wilson-Fisher fixed point of ϕ4 field
theory with O(3) symmetry in 3 spacetime dimensions.
Here, our discussion is conveniently presented in terms of
the fixed-length formulation of this field theory, which is
the O(3) non-linear sigma model of the field unit length
field n(r, τ) (n2 = 1), representing the local orientation
of the antiferromagnetic order, with action

Sbulk =
1

2g̃

∫
dτ

∫
d2r

[
(∂τn)2 + c2(∇rn)2

]
, (2)

where τ is imaginary time, r is the spatial co-ordinate, c
is the spin-wave velocity, and the coupling g̃ is a mono-
tonic function of g. At the quantum critical point at
g̃ = g̃c, the correlations of the antiferromagnetic order
are characterized by the power-law decay

⟨n(r, τ) · n(0, 0)⟩ ∼ (r2 + c2τ2)−(1+η)/2, (3)

with the exponent η ≈ 0.04 [10] of the Wilson-Fisher
fixed point.

Let us now add a non-magnetic impurity to the above
systems. For the lattice Hamiltonian H , we create a va-
cancy by removing a single spin. In a finite size L×L sys-
tem, this leads to a twofold degenerate S = 1/2 ground
state. We take L odd and place the vacancy at the cen-
ter of the top layer, as shown in Fig. 1. We choose the
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FIG. 1: (Color online) An L = 5 incomplete bilayer model
with a vacancy. The single unpaired central spin (yellow)
constitutes frame R = 0. Frames R = 1 and Rmax = 2
consist, respectively, of the surrounding red and blue sites.

ground states to be eigenstates of the total Sz; in either
of these states, all the ⟨Sz

1,2,i⟩ are non-zero even in zero
applied field (which we assume throughout), and exhibit
an interesting spatial structure that we will describe.

Next, we add the impurity to the field theory. The un-
paired spin near the origin leads to a net uncompensated
Berry phase between the antiferromagnetically oriented
spins, adding an impurity term to the action [7]

Simp = iS

∫
dτA[n(0, τ)] ·

dn(0, τ)

dτ
, (4)

which depends only upon the orientation of the order
parameter at r = 0. Here S = 1/2 is the unpaired spin
associated with the non-magnetic impurity, and A is the
Dirac monopole function in spin space with ∇n×A = n.
It was argued in Refs. [6, 7] that Sbulk + Simp univer-
sally describes the quantum impurity near g = gc. In the
infinite system, the critical spin correlations are charac-
terized by a different “boundary” exponent at r = 0:

⟨n(0, τ) · n(0, 0)⟩ ∼ |τ |−η′

. (5)

A crucial property of the field theory Sbulk + Simp

is that, like the lattice model, for g ≥ gc the ground
state has total spin S. This means that for the con-
served Noether magnetization density Qz(r), associated
with the symmetry of O(3) rotations of the action, has
a non-vanishing expectation value even in zero field, and
obeys

〈∫
d2rQz(r)

〉
= S (6)

in the ground state with maximum spin projection in the
z direction. While this spin is localized in the spin-gap
state with g > gc, there is a transition to a delocalized
critical state at g = gc in which (as we describe below)
the spatial extent of the magnetization is set only by
the system size. Consequently, in an infinite system at
g = gc we have ⟨Qz(r)⟩ = 0 at all r even though Eq. (6) is
obeyed. A related result is that despite the quantization
of total spin in the ground state, the finite temperature
(T ) response of an infinite system to a uniform applied

magnetic field need not have the Curie value; the latter
is the response of gapless continuum of low energy states,
and not of the ground state manifold alone. The theory
[6] predicts a spin susceptibility χ = C/T , with C ≠ S(S+
1)/3. Numerical efforts to extract C will be discussed
elsewhere [11]; here we focus on impurity effects at T = 0.

A proper analysis of the delocalized spin texture in the
ground state at g = gc requires imposition of a finite size
L. The system size L sets the scale of the delocalized
spin in the critical state, and we therefore postulate the
scaling form

⟨Qz(r)⟩ = L−2ΦQ(r/L), (7)

where ΦQ(y) is a universal function (with no arbitrary
scale factors) obeying

∫
d2yΦQ(y) = S. Analytic results

for ΦQ(y) can be obtained as expansions in (3 − d) and
(d− 1) (where d is the spatial dimensionality), and these
will be described elsewhere. More useful here is the be-
havior of the scaling function as y → 0, which describes
the spin distribution in the vicinity of the impurity. A
key feature of the theory [6] is that both the uniform and
staggered spin operators of the bulk theory transmute
into the same “boundary” operator as they approach
the impurity. Here we are using n(0, τ) to represent
this boundary operator, and so the scaling dimensions
implicit in Eqs. (5, 7) suggest the operator product ex-
pansion limr→0 Q(r, τ) ∼ |r|−2+η′/2n(0, τ), which in turn
implies that

ΦQ(y → 0) ∼ y−2+η′/2. (8)

Similarly, we can also examine the distribution of stag-
gered spin density, which is encoded in the spatial distri-
bution of the order parameter n. From Eq. (3) we deduce
the scaling form

⟨nz(r)⟩ = L−(1+η)/2Φn(r/L). (9)

Now the operator product expansion to the same bound-
ary operator is limr→0 n(r, τ) ∼ |r|−(1+η−η′)/2n(0, τ),
and this leads to

Φn(y → 0) ∼ y−(1+η−η′)/2. (10)

Unlike ΦQ, the integral of Φn is not quantized, and its
overall scale is non-universal. Note that the theoreti-
cal results in Eqs. (7,8,9,10) are tightly constrained, de-
pendent only upon a single exponent η′ in addition to
the standard bulk critical correlation function exponent
η ≈ 0.04. The value of η′ has previously been estimated
in the time domain, using Eq. (5) [12]. We will show be-
low that the numerics confirm that the spatial structure
is also governed by this exponent, which we evaluate to
higher precision than previously.

In order to numerically study how the impurity-
induced total magnetization Sz =

∑
i Sz

i = ±1/2 is dis-
tributed in the system at T = 0, the lattice is decomposed
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FIG. 2: The uniform frame magnetization M0(R) (a) and the
corresponding integrated quantity I0(R) (b) plotted according
to the predicted scaling laws for several system sizes. In the
inset of (a) we show the magnetization at R = 0, from which
we obtain the exponent η′ = 0.40 ± 0.02. All other lines
are shown using this value for the exponent. In (b) the data
collapse is so tight that the L = 257 points almost completely
hide the data for smaller L.

into “frames” surrounding the vacancy, as illustrated in
Fig. 1. For each frame R we determine the uniform and
staggered magnetizations, respectively, defined by,

M0(R) =

〈

s
∑

i∈R

(Sz
1,i + Sz

2,i)

〉

, (11)

Mπ(R) =

〈

s
∑

i∈R

(−1)xi+yi(Sz
1,i − Sz

2,i)

〉

, (12)

where s = 2Sz = ±1 is included in order to make the
contributions positive for both Sz = ±1/2 states. Ex-
pectation values are calculated in T > 0 quantum Monte
Carlo simulations utilizing the stochastic series expan-
sion algorithm [13]. Ground state results are obtained by
choosing a sufficiently low temperature for each L. For
the largest lattice we have studeied, L = 257, tempera-
tures as low as T/J ≈ 10−3 are required for satisfactory
T → 0 convergence [14].

The uniform frame magnetization is related to the
magnetization density Qz by M0(R) ∝ RQz(R) for
R > 0. Hence, according to the scaling forms (7,8), we

should have for R/L small

M0(R) ∼
1

R

(
R

L

)η′/2

, (13)

I0(R) ∼

(
R

L

)η′/2

, (14)

where I0(R) is the integrated frame magnetization,

I0(R) =
R∑

r=0

M0(r), (15)

which has to be exactly 1/2 at the edge of the lattice,
i.e., for Rmax = (L − 1)/2. The uniform magnetization
results are shown versus R/L in log-log plots in Fig. 2.
The upper panel shows the frame magnetization, which
is seen to collapse onto a single curve for L ! 17, with
the exception of the R = 1 points which scale with a
different prefactor. Power-law behavior is seen for small
R/L, including also the R = 1 data which approach such
behavior for larger L. For a fixed R, I0(R) decays ac-
cording to Eq. (14) as L−η′/2. This should hold also for
R = 0. The inset of the upper panel of Fig. 2 shows
the scaling of the R = 0 magnetization, which in fact
gives us the most precise determination of the exponent;
η′ = 0.40±0.02. We use this value of η′ to draw the lines
shown in the main panels of Fig. 2. The integrated mag-
netization I0(R), shown in the lower panel, scales even
better than M0, with also data for the smallest lattices
falling on the same curve.

The theory is expected to capture accurately the be-
havior for large lattices, far from the impurity and the
edges, i.e., for large R but small R/L. It is therefore quite
remarkable that even the M0(R = 2) data fall on the
common scaling curve and that the integrated magneti-
zation scales almost perfectly even for very small lattices.
The asymptotic power-law behavior is closely approached
below R/L ≈ 0.01.

Next we consider the staggered component (12) of the
impurity induced texture and the corresponding integral

Iπ(R) =
R∑

r=0

Mπ(r). (16)

Eqs. (9,10) imply for small R/L

Mπ(R)L−(1−η)/2 ∼

(
R

L

)(1+η′−η)/2

, (17)

Iπ(R)L−(3−η)/2 ∼

(
R

L

)(3+η′−η)/2

. (18)

Results are shown in Figs. 3. We observe good data col-
lapse of Mπ for all L, and the slope vs R/L agrees very
well with the value η′ = 0.40 determined above from
the uniform magnetization. In this case the integrated
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FIG. 3: Size and distance scaling of the staggered frame mag-
netization Mπ(R) (a) and the corresponding integrated quan-
tity Iπ(R) (b). The over-all L dependence, L−(1−η)/2 and
L−(3−η)/2 for Mπ and Iπ, respectively, has been divided out.
The lines in (a) and (b) have slopes 0.68 and 1.68, respec-
tively, corresponding to the value of the exponent η′ = 0.40
extracted from the M0(0) results in Fig. 2.

quantity shows substantial subleading size corrections for
small R, but an L → ∞ approach to the power-law be-
havior shown by the line appears very plausible.

In conclusion, we have presented analytical and nu-
merical results for the uniform and staggered compo-
nents of the spin texture induced by a static vacancy
in a 2D quantum antiferromagnet at its quantum crit-
ical point. The theory predicts scaling functions with
asymptotic power-law behaviors, which are very well re-
produced by the numerics. We have determined the value
η′ = 0.40 ± 0.02 for the single exponent governing the
asymptotic behavior of both the uniform and staggered
structure. This exponent characterizes the influence of
the Berry phase in Simp and so, unlike the bulk the-
ory, cannot be related to the exponent of any classical
theory in one higher dimension. Our results support a
central property of the “boundary” critical field theory
[6]: the bulk operators for the staggered and uniform
magnetizations transmute into the same boundary spin
operator as they approach the impurity. Earlier time do-
main studies [12] yielded η′ = 0.37 ± 0.05 [12]; the good
agreement between the two approaches provides strong
evidence that a single exponent indeed governs both the
temporal and spatial impurity effects [6]. In addition to

extracting the asymptotic power-law, our numerical cal-
culations also give the full scaling functions for arbitrary
distance from the impurity. We note that the integrated
effects of the impurity are much stronger at criticality
than in the symmetry-broken Néel state, where the in-
duced disturbance of the magnetic structure around the
impurity decays asymptotically as r−3 [15].

NMR [2, 3] and STM [4, 5] experiments have probed
the magnetization distributions around an impurity; in
the T > 0 quantum critical regime, these are controlled
by the exponent η′ determined here.
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[15] A. Lüscher and O. P. Sushkov, Phys. Rev. B 71, 064414
(2005).


