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We compute the influence of the quantum zero-point motion of a vortex on the electronic quasi-
particle spectra of s-wave superconductors. The vortex is assumed to be pinned by a harmonic
potential, and its coupling to the quasiparticles is computed in the framework of BCS theory. Near
the core of the vortex, the motion leads to a shift of spectral weight away from the chemical poten-
tial, and thereby reduces the zero bias conductance peak; additional structure at the frequency of
the harmonic trap is also observed.

I. INTRODUCTION

Recent work on ‘deconfined quantum critical points’1

between superfluid and insulating phases has pointed out
the central role played by the quantum fluctuations of the
vortex excitations of the superfluid state.2,3,4,5 However,
this work has largely been carried out using convenient
model Hamiltonians, with little direct connection to the
microscopic Bardeen-Cooper-Schrieffer (BCS) theory of
the superconducting state. It is the purpose of this pa-
per to begin an exploration of the quantum fluctuations
of vortices in the BCS theory. We will examine the theory
of a single vortex in an s-wave superconductor, fluctuat-
ing harmonically in a trapping potential. Our primary
focus will be on the influence of this quantum motion
on the electronic local density of states (LDOS). Mod-
ern scanning tunneling microscopy (STM) can provide
detailed measurements of the LDOS in the vicinity of
a vortex, and so can, in principle, detect signatures of
vortex fluctuations.

Existing s-wave superconductors have a large coher-
ence length, ξ, and consequently a large effective mass
which is expected to scale as the cross-section area of the
vortex core ∼ ξ2. As a result, the vortex zero-point mo-
tion is small, and its signatures in the LDOS are probably
indetectable. However, should a small coherence length
s-wave superconductor be discovered in the future, the
results here should be useful.

We will also develop some basic formalism for ap-
plication to d-wave superconductors. Naturally, the
cuprate superconductors are prime candidates for observ-
ing vortex zero-point motion with their small values of ξ,
and also indications of proximity to a superconductor-
insulator transition (possibly of the ‘deconfined’ or
‘Landau-forbidden’ variety) at finite doping. However,
the application of the formalism of the present paper to
d-wave superconductors is far from straightforward: the
anisotropic gap and loss of rotational invariance makes
the numerics much more demanding, and the presence
of gapless nodal quasiparticles leads to new physics. We
therefore defer full discussion of the d-wave case to a sec-
ond paper6 (hereafter referred to as II).

In a general sense, our analysis can be viewed as a

study of the influence of the phase of the superconducting
order parameter on the vortex LDOS. However, rather
than integrating over the phase fluctuations explicitly,
we are encapsulating them in a collective co-ordinate,
the position of the vortex.

An important limitation of the calculation presented
here is that, in determining the coupling between the
moving vortex and the electronic excitations, we expand
in gradients of the pairing amplitude of the electrons.
The applicability of such an expansion places a lower
bound on the value of the coherence length, and so we
are not able to properly explore the limit of extremely
short coherence lengths. A separate computation which
does not make this gradient expansion, while working in
an effective low energy theory, will be presented in paper
II.

We will begin in Section II by setting up the general
formalism which couples a moving vortex to the elec-
tronic quasiparticles. Rather than considering a vortex
lattice and its oscillations, we will use a simple Einstein
model for the vortex lattice phonons, and so work with a
single vortex moving in a harmonic potential. The elec-
tronic self-energy corrections from the vortex motion will
be computed in Section III for an s-wave superconduc-
tor. The rotation symmetry of this case is an important
aide in our numerical computations, and we are able to
obtain good numerical convergence for a significant range
of parameters.

II. GENERAL FORMALISM

We will develop the general formalism for a two dimen-
sional s- or d-wave superconductor. In principle, similar
considerations apply to three-dimensional superconduc-
tors, but we will not present them here. Complete nu-
merical results for s-wave superconductors appear in the
following section, while those for d-wave superconductors
appear in paper II.

To model the zero-point fluctuations of a vortex in a
superconductor with either s- or d-wave symmetry we
use the following Bogoliubov-de Gennes like action as a
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starting point:

S =

∫

d2r dτ (ψ̄↑, ψ↓) (∂τ + HBdG)

(

ψ↑

ψ̄↓

)

+

∫

dτ V (R(τ)) , (1)

where (with ~ = 1)

HBdG =





(

− 1
2me

∂2
r
− EF

)

∆̂ (r − R(τ))

∆̂∗ (r − R(τ)) −
(

− 1
2me

∂2
r
− EF

)



 .

(2)
Here ψ(r, τ) and ψ̄(r, τ) are conjugate Grassman fields
for electrons with mass me, EF = k2

F /2me = mev
2
F /2 is

the Fermi energy and ∆̂(r−R(τ)) is the gap operator for
superconducting electrons in the presence of a vortex at
position R(τ) in the plane. The vortex is allowed to move
in imaginary time τ and to account for the interaction
between vortices in a vortex lattice we put our vortex
in a harmonic oscillator potential V (R) with equilibrium
position R = 0.

For a superconductor with s-wave symmetry the gap
operator can be taken to be a simple scalar ∆(r). As-
suming there is a vortex at the center of the plane we can
choose a gauge such that the phase of the order parame-
ter is equal to the polar angle of the position vector, i.e.
(with a slight abuse of notation) ∆(r) = ∆(r)eiθ .

The d-wave case is more difficult and it is customary
to express the gap operator in terms of a non-local or-
der parameter with a center of mass coordinate r and
a relative coordinate r′. Expanding in powers of r′ and
keeping only terms up to second order we can eliminate
r′ and write the gap operator with dx2−y2 symmetry (see
Appendix A) as

∆̂ =
{∂x, {∂x,∆(r)}}

k2
F

− {∂y, {∂y,∆(r)}}
k2

F

, (3)

where {a, b} = (ab+ba)/2. This equation is equivalent to
a gap operator with dxy symmetry as derived by Simon
and Lee.8 For a vortex at the origin we again take ∆(r) =
∆(r)eiθ . In Appendix A we will discuss issues of gauge
invariance associated with the above expressions and the
important comments made on this issue in Ref. 9. A
choice of gauge is made in Eq. (3), and no additional term
is needed to preserve gauge invariance of the Bogoliubov-
de Gennes equations.

Integrating out the electronic degrees of freedom in the
action given in Eq. (1) one obtains an effective action
for the vortex degrees of freedom. Expanding in powers
of the velocity of the vortex we obtain for the effective
vortex action (for simplicity at zero temperature) in the
imaginary frequency formalism (see Appendix B)

SVortex
eff =

mv

2

∫

dω

2π
R†(iω)

(

ω2 + ω2
0 ωcω

−ωcω ω2 + ω2
0

)

R(iω) .

(4)

While the term proportional to ω can be identified to be
the Magnus force, the term proportional to ω2 is just the
vortex kinetic energy and defines the mass of the vortex,
mv. For a BCS-superconductor with s-wave symmetry
mv is of the order of me(kF ξ)

2. With mv given, we have
defined ω0 by V (R) = mvω

2
0R

2/2. For a vortex in a
vortex lattice, the characteristic frequency is the plasma
frequency

ωp =
√

4π2ρs/mvA0 , (5)

where ρs is the superfluid stiffness and 1/A0 is the density
of vortices. The frequency ω0 is approximately given by
ω0 ≈ (5/2)ωp.

5 Finally, in a Galilean invariant superfluid,
ωc = 2πρs/mv and in a dual picture can be identified to
be the ‘cyclotron’ frequency. For a superfluid on a lattice,
however, it has recently been argued that ωc is reduced
and the density of the Mott insulator has to be subtracted
from the superfluid stiffness when the superfluid is close
to a nearby Mott insulating state.2,3,4,5

Diagrammatically, the above propagator to the effec-
tive vortex action is just the RPA propagator which
includes the Berry phase term. To determine the ef-
fect of the vortex motion on the electronic spectrum we
can use the RPA propagator and calculate the self en-
ergy correction to the electronic eigenstates in the GW
approximation.10 Let us first expand the gap operator
∆̂ (r − R(τ)) in Eq. (1) to leading order in R(τ). Then
S can be written as S ≈ S0 + Sint with

S0 =

∫

dτ d2r (ψ̄↑, ψ↓)
(

∂τ + H0
BdG

)

(

ψ↑

ψ̄↓

)

(6)

and H0
BdG obtained from Eq. (2) by setting R = 0. To

leading order the coupling of the vortex to the electronic
degrees of freedom is described by

Sint = −
∫

dτ d2rR(τ)·(ψ̄↑, ψ↓)

(

0 ∂r∆̂

∂r∆̂
∗ 0

)(

ψ↑

ψ̄↓

)

.

(7)
Let us now go to a basis which diagonalizes the
Bogoliubov-de Gennes Hamiltonian H0

BdG: It is well-
known that if Ψℓ(r) ≡ [uℓ(r), vℓ(r)]

T (with, say, ℓ >
0) is an eigenstate of H0

BdG with eigenvalue ǫℓ, then
[−v∗ℓ (r), u∗ℓ (r)]

T is an eigenstate of H0
BdG with eigenvalue

−ǫℓ.11 Defining

Uℓ(r) =

(

uℓ(r) −v∗ℓ (r)
vℓ(r) u∗ℓ (r)

)

(8)

we can write
(

ψ↑(r, τ)
ψ̄↓(r, τ)

)

=
∑

ℓ>0

Uℓ(r)

(

χ+ℓ(τ)
χ−ℓ(τ)

)

(9)

such that
∫

d2r U †
ℓ (r)H0

BdGUℓ′(r) = σz ǫℓ δℓ,ℓ′ , (10)
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where σz (like σx which we will use below) is just a
usual Pauli matrix. While it is customary to restrict
the energies ǫℓ to values greater zero11 (for which we
use quantum numbers ℓ > 0), we prefer to subsume
the ‘spin’ index into the index ℓ and define for ℓ > 0
Ψ−ℓ(r) ≡ [u−ℓ(r), v−ℓ(r)]

T ≡ [−v∗ℓ (r), u∗ℓ (r)]
T such that

ǫ−ℓ = −ǫℓ. With this notation,

(

ψ↑(r, τ)
ψ̄↓(r, τ)

)

=
∑

ℓ

Ψℓ(r)χℓ(τ) (11)

and S0 reduces to

S0 =

∫

dτ
∑

ℓ

χ̄ℓ(∂τ + ǫℓ)χℓ , (12)

where the sum is now over all quantum numbers ℓ in-
cluding the ‘spin’ index. In the new basis, Sint can be
written as

Sint = −
∫

dτ
∑

ℓℓ′

R(τ) ·Mℓ;ℓ′χ̄ℓχℓ′ , (13)

where the transition matrix elements

Mℓ;ℓ′ =

∫

d2r
(

u∗ℓ∂r∆̂vℓ′ + v∗ℓ∂r∆̂
∗uℓ′

)

(14)

are like R(τ) vectors in the two-dimensional plane. It is
convenient to also define M± ≡ (Mx ± iMy)/2 such that

M+
ℓ;ℓ′ =

(

M−
ℓ′;ℓ

)∗

=

∫

d2r
(

u∗ℓ∂z̄∆̂vℓ′ + v∗ℓ∂z̄∆̂
∗uℓ′

)

,

(15)
with ∂z̄ ≡ (∂x + i∂y)/2. We can now calculate the self
energy in the GW approximation10 for which we obtain

Σℓ(iω̃) =
∑

ℓ′α

Aα
ℓ;ℓ′

iω̃ − [ωv sgn (ǫℓ′) + ǫℓ′ ] − αωc/2
, (16)

with

Aα
ℓ;ℓ′ =

|Mα
ℓ;ℓ′|2

mvωv
. (17)

Here, α = ± and ωv =
√

ω2
0 + ω2

c/4 is the vortex
(‘magnetoplasma’) frequency in an Einstein model. As

should be expected, the self energy satisfies Σ−ℓ(iω̃) =
−Σℓ(−iω̃).

If our system is infinitely large and boundary effects
can be neglected we can make use of the Hellmann-
Feynman theorem

∫

d2rΨ†
ℓ ∂rH0

BdG Ψℓ′ = (ǫℓ′ − ǫℓ)

∫

d2rΨ†
ℓ∂rΨℓ′ (18)

and write Mα
ℓ,ℓ′ as

Mα
ℓ,ℓ′ = (ǫℓ′ − ǫℓ)U

α
ℓ,ℓ′ , (19)

with

U+
ℓ,ℓ′ =

(

U−
ℓ′,ℓ

)∗

=

∫

d2rΨ†
ℓ∂z̄Ψℓ′ . (20)

In our numerical calculation presented below, however,
we will, of course, consider a system of finite size such
that boundary effects need to be included. We will see
that calculating Mα

ℓ,ℓ′ using the Hellmann-Feynman the-
orem will turn out to be easier than calculating these
transition matrix elements directly.

III. VORTEX IN AN s-WAVE

SUPERCONDUCTOR

For a vortex in an s-wave superconductor centered
at the origin we choose ∆(r) = ∆(r) eiθ with ∆(r) =
∆0 tanh(r/ξ) where ∆0 is the bulk gap and ξ = vF /π∆0

is the coherence length. H0
BdG is rotationally invariant

such that angular momentum is a good quantum num-
ber. Following Caroli, de Gennes, and Matricon,12 we
denote angular momentum by µ = ±1/2,±3/2, . . . and
write

(

un
µ(r)
vn

µ(r)

)

=
exp [−i(µ− σz/2)θ]√

2π

(

fn
µ,+(r)
fn

µ,−(r)

)

. (21)

There is only one bound state for each angular momen-
tum µ, but there are also extended states, such that we
also include a radial quantum number n.16 It should be
noted that while ℓ is a collective label for µ and n, −ℓ
collectively labels −µ and n. Making the above ansatz,
the Bogoliubov-de Gennes equations reduce to

{

σz
1

2me

(

−
(

d

dr

)2

− 1

r

d

dr
+

(µ− σz/2)2

r2
− k2

F

)

+ σx∆(r)

}

(

fn
µ,+(r)
fn

µ,−(r)

)

= ǫnµ

(

fn
µ,+(r)
fn

µ,−(r)

)

. (22)

Before solving these equations numerically, it is worth-
while to first consider the bound states with energies

ǫµ much smaller than the bulk gap ∆0 and large coher-
ence lengths ξ. As was shown by Caroli, de Gennes, and
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Matricon12, the bound state energies are then given by

ǫµ = E1 µ , with E1 ≈ ∆2
0

EF
. (23)

Also, the radial part of the wave function is well approx-
imated by

fµ,±(r) = Cµ exp

(

−2

∫ r

0

dr′
∆(r′)

vF

)

Jµ∓1/2(kF r) ,

(24)

where Jm(x) are ordinary Bessel functions of the first
kind and integer order m = µ ∓ 1/2. The constants
Cµ are independent of the ± index and are all of order
√

kF /ξ. It should be noted that fµ+1,+(r) ≈ fµ,−(r)
which we will use for an estimate of the matrix elements
A+

µ;µ′ ≡ δµ′,µ+1A
+
µ . With the radial quantum number

included we have

M+
µn;µ′n′ =

1

2
δµ′,µ+1

∫ ∞

0

dr
{

[r∂r∆ − ∆(r)] fn
µ,+(r)fn′

µ′,−(r) + [r∂r∆ + ∆(r)] fn
µ,−(r)fn′

µ′,+(r)
}

. (25)

Using the above, we obtain A+
µ ≈ v2

F /(4π
2mvωvξ

4).
Since the mass of a vortex in a BCS superconductor,
mv, is of the order me(kF ξ)

2, it follows

A+
µ ≈ A ≡ 1

4πvFm3
e(ωv/∆0)ξ5

. (26)

The fact that if we keep ωv/∆0 constant, the self energy
increases with the fifth power of 1/ξ as ξ decreases is
quite remarkable. For large ξ, the self energy correction
is very small and the motion of the vortex obviously has
practically no influence on the spectrum. However, as ξ
decreases, the self energy correction becomes more and
more important and we expect a dramatic change of the
spectrum within a small range of the coherence length ξ.

Let us now consider the local density of states (LDOS)
which (in the more general case and with ℓ including the
‘spin’ index) is given by

ρ(r, ω) = − 1

π
Im
∑

ℓ

|uℓ(r)|2
ω − ǫℓ − Σℓ(ω) + i0+

. (27)

For the case of an s-wave order parameter as considered
here, the only bound state wave function which does not
vanish at r = 0 is uµ=1/2(r). We can therefore actually
calculate the LDOS at the vortex center and obtain

ρ(r = 0, ω) =
|uµ=1/2(0)|2

ω2
1

{

(ωv + ωc + E1)
2 δ(ω − ǫ1/2)

+Aδ(ω − ǫ1/2 − ω1) +Aδ(ω − ǫ1/2 + ω1)
}

, (28)

with ω1 =
√

(ωv + ωc + E1)2 + 2A which for large co-
herence lengths ξ is close to the vortex frequency ωv.
While there is just a peak with weight |uµ=1/2(0)|2 at
the unperturbed energy ǫ1/2 in the absence of the matrix
element A, as ξ decreases A increases and we also find
two satellite peaks shifted from this position by ±ω1.

To obtain the LDOS away from the vortex center and
to calculate the LDOS at arbitrary energy we follow Gygi

and Schlüter13 and evaluate the eigenenergies and eigen-
vectors of H0

BdG numerically. First we replace the sys-
tem of infinite size by a disk of finite radius R0. We then
expand the quasi-particle amplitudes fn

µ,± into Fourier-
Bessel series: Denoting the j’th zero of the ordinary
Bessel function Jm by αmj , we introduce the functions

φmj(r) =

√
2

R0|Jm+1(αmj)|
Jm(αmjr/R0) , (29)

which are eigenfunctions to the kinetic energy operator
and satisfy the normalization condition

∫ R0

0

dr r φmj(r)φmj′ (r) = δjj′ . (30)

Truncating the Fourier-Bessel series for the quasi-particle
amplitudes fn

µ,± at large N0, we have

(

fn
µ,+(r)
fn

µ,−(r)

)

=

N0
∑

j=1

(

cnµjφµ+1/2,j(r)
dn

µjφµ−1/2,j(r)

)

(31)

With these approximations the Bogoliubov-de Gennes
equations can be solved by solving the following matrix
eigenvalue problem:

(

T− ∆
∆T T+

)

Ψn
µ = ǫnµΨn

µ . (32)

Here T± and ∆ are N0 × N0 matrices with matrix ele-
ments

T±
jj′ = ∓ 1

2me

(

α2
µ±1/2,j

R2
0

− k2
F

)

δjj′ , (33)

∆jj′ =

∫ R0

0

dr r φµ−1/2,j(r)∆(r)φµ+1/2,j′ (r) , (34)
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and Ψn
µ is given by Ψn

µ = (c1 · · · cN0
, d1 · · · dN0

)T . Having
calculated these eigenvectors we can express the matrix
elements M+

µ,n;µ+1,n′ which determine the A+
µ;nn′ as

M+
µ,n;µ+1,n′ =

1

2

∑

jj′

(

cnµjK
(µ)
jj′ d

n′

µ+1,j′ + dn
µjL

(µ)
jj′ c

n′

µ+1,j′

)

,

(35)
where we have defined

K
(µ)
jj′ =

∫ R0

0

dr [r∂r∆ − ∆(r)]φµ−1/2,j(r)φµ+3/2,j′ (r) ,

(36)
and

L
(µ)
jj′ =

∫ R0

0

dr [r∂r∆ + ∆(r)]φµ+1/2,j(r)φµ+1/2,j′ (r) .

(37)
Alternatively, as discussed at the end of the preceding
section, we can also make use of the Hellmann-Feynman
theorem which when including boundary terms reads for
the s-wave case considered here14

M+
ℓ,ℓ′ = (ǫℓ′ − ǫℓ)U

+
ℓ;ℓ′ −

R0

2me

∫ 2π

0

dθ ∂rΨ
†
ℓσ3∂z̄Ψℓ′

∣

∣

∣

r=R0

.

(38)
Expressing all wave functions in terms of their Fourier-
Bessel components both integrals can be done analyti-
cally and we obtain

Mnn′

µ,µ+1 =

1

2

∑

jj′

cnµj

[

(ǫn
′

µ+1 − ǫnµ)K(µ−1/2)
jj′ − L(µ−1/2)

jj′

]

cn
′

µ+1,j′

+
1

2

∑

jj′

dn
µj

[

(ǫn
′

µ+1 − ǫnµ)K(µ+1/2)
jj′ + L(µ+1/2)

jj′

]

dn′

µ+1,j′ ,

(39)

with the matrix elements K(m)
jj′ and L(m)

jj′ given by

K(m)
jj′ = sign (m+ 1/2) (−1)j−j′ 2αmjαm+1,j′

R0(α2
m+1,j′ − α2

mj)
,

(40)

L(m)
jj′ = sign (m+ 1/2) (−1)j−j′ αmjαm+1,j′

meR3
0

. (41)

For simplicity and to avoid too many parameters which
do not change the essential physics, we have neglected
the electromagnetic vector potential in our above con-
siderations and will not calculate the pair potential self-
consistently. Neglecting the vector potential is safe in
the extreme type II case where the London penetration
length is much larger than the coherence length which
we are considering here. Although there are significant
deviations from the tanh-behavior of ∆(r) for small tem-
peratures, corrections to the LDOS are expected to be
small and can easily be incorporated. Once all eigenener-
gies and eigenvectors of H0

BdG are determined, the matrix
elements A+

µ;nn′ and then the LDOS can be calculated.

In STM experiments the local tunneling conductance
G = ∂I/∂V can be measured as a function of gate volt-
age V . If we are at very low temperature and have a
tip with a constant density of states (DOS) the tunnel-
ing conductance is essentially equal to the LDOS of the
probe. At finite temperature, each peak in the LDOS be-
comes broadened with the derivative of the Fermi func-
tion f(ω) = 1/(eω/T + 1) such that

G(r, ω = eV ) = −G0

ρ0

∫

dω′ ρ(r, ω + ω′) f ′(ω′) . (42)

Here we have expressed the normalization constant in
terms of the DOS of a free 2-dimensional electron gas
(per spin direction), ρ0 = me/2π, and the corresponding
tunneling conductance, G0.

In our numerical calculations we have chosen kFR =
400. For the vortex (Einstein) frequency we use ωv =
0.2 ∆0 and for simplicity we set ωc = 0. Setting the
temperature equal to T = 0.006EF we obtain smooth
curves for the tunneling conductance with well distin-
guished bound state peaks. In Fig. 1 we show plots of
the tunneling conductance G(r, ω) at the vortex center
and at several distances away from it for kF ξ = 10 and
mv = me(kF ξ)

2 = 100me. The plots are almost indistin-
guishable from plots for the tunneling conductance with
the same parameters but a static vortex (this amounts to
taking the limit mv → ∞).13 As we decrease the coher-
ence length (and/or the vortex mass) the influence of the
moving vortex on the electronic spectrum becomes more
and more pronounced. In Fig. 2 we show the tunneling
conductance for kF ξ = 5 and mv = me(kF ξ)

2 = 25me.
Now one can clearly see two satellite peaks at the cen-
ter of the vortex, shifted from the central peak by ±ω1

which is of the order of the vortex frequency ωv. In units
of the Fermi energy the temperatures chosen in Figs. 1
and 2 are the same. However, in units of the bulk gap
∆0, the temperature in the latter figure is smaller than
that in the former by a factor of two. As a result of
this, the hight of the zero bias peak is actually larger
in Fig. 2 than in Fig. 1 even though spectral weight is
shifted to the satellite peaks in Fig. 2. In fact, the quan-
tum zero-point motion does lead to a reduction of the
zero bias conductance peak as can be seen by comparing
the results of Fig. 2 with those calculated for the same
parameters, but with a static vortex. This case is shown
in Fig. 3.

IV. CONCLUSIONS

We presented a first determination of the influence of
the vortex zero-point motion in a simple model based
upon BCS theory. For s-wave superconductors, a com-
prehensive computation was possible, with good conver-
gence of finite-size effects, and the ability to explore a
wide range of parameters as T → 0. We found two im-
portant effects in the electronic LDOS: (i) a suppression
in the strength of the zero-bias peak at the vortex core,
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ω/∆0

0

4

8

12

16

20

G
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,ω
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G
0

FIG. 1: Tunneling conductance G = ∂I/∂V for a supercon-
ductor with s-wave symmetry as a function of ω at the vor-
tex center r = 0 (upper curve) and kF r = 4, 8, . . . , 20 for
kF ξ = 10 and mv = me(kF ξ)2 = 100 me. Each curve is offset
by 2 units for clarity. We have chosen ωv = 0.2 ∆0 and have
for simplicity set ωc = 0. The temperature is T = 0.006 EF

and this finite temperature leads to a broadening of the con-
ductance peaks. As can be seen in the figure, there are no
satellite peaks. For these parameters, the tunneling conduc-
tance of the static vortex case, without the self energy correc-
tion, has an almost identical appearance.

and (ii) the appearance of satellite peaks at frequencies
of order ±ωv, where ωv is the vortex oscillation frequency.

An extension of our results to d-wave superconductors
appears in paper II. There we will introduce a model de-
signed specifically to study the influence of the low energy
quasiparticles, and present implications for experiments
on the cuprate supercondutors.
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FIG. 2: Tunneling conductance G = ∂I/∂V for a
smaller value of ξ than that in Fig. 1, kF ξ = 5 and
mv = me(kF ξ)2 = 25 me. The tunneling conductance is
plotted as a function of ω at the vortex center r = 0 (upper
curve) and kF r = 4, 8, . . . , 20. All other parameters are
chosen as in Fig 1. The two satellite peaks shifted from the
central peak by ±ω1 can clearly be seen in the curve for
r = 0.

APPENDIX A: BOGOLIUBOV-DE GENNES

EQUATIONS FOR A d-WAVE

SUPERCONDUCTOR

In this appendix we derive local Bogoliubov-de Gennes
equations for a superconductor with d-wave symmetry.
These are applied to the vortex zero point motion, as in
Section II, while complete numerical results are deferred
to paper II.

As a starting point we use the following generalized
Bogoliubov-de Gennes equations,

(

Ĥ0 ∆̂

∆̂∗ −Ĥ∗
0

)(

uℓ(r)
vℓ(r)

)

= ǫℓ

(

uℓ(r)
vℓ(r)

)

. (A1)

Here,

Ĥ0 =
1

2me
(−i∂r + A(r))2 − EF (A2)

is the effective single particle Hamiltonian, A(r) is the

vector potential, and the gap operator ∆̂ = ∆̂(r) is de-
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FIG. 3: Tunneling conductance G = ∂I/∂V for the same
parameters as in Fig. 2, but with a static vortex.

fined by

∆̂(r)v(r) ≡
∫

d2r′ ∆(r − r′/2, r′) v(r − r′) , (A3)

where ∆(r, r′) is the pair potential which is a function of
the center of mass coordinate r and the relative coordi-
nate r′. More explicitly, ∆̂ can be written as

∆̂(r) =

∫

d2r′ ∆(r − r′/2, r′)e−r
′·∂r . (A4)

As can easily be checked, the Bogoliubov-de Gennes
equations (A1) are invariant under the following gauge
transformation:

u(r) → eiχ(r)u(r) ,

v(r) → e−iχ(r)v(r) ,

∆(r, r′) → eiχ(r+r
′/2)+iχ(r−r

′/2)∆(r, r′) ,

A(r) → A(r) − ∂rχ(r) . (A5)

All of the above is quite general and the s-wave case is
easily recovered by setting ∆(r, r′) = ∆(r)δ(r′).

For a d-wave superconductor we express the relative
coordinate r′ in polar coordinates r′ and θ′. Neglecting
higher harmonics we write the dx2−y2 -wave order param-
eter as

∆(r, r′) = 2∆(r, r′) cos(2θ′) . (A6)

It is important to note that Eq. (A6) already implies
some choice of gauge.

To obtain local Bogoliubov-de Gennes equations we use
this order parameter and expand the rhs of Eq. (A4) up
to second order in r′ which certainly is a good approx-
imation if the dominant contribution to ∆(r, r′) comes
from small r′ which we will assume here. Within this
approximation, it is straightforward to show that

∆̂ =
(∂2

x − ∂2
y)∆

4k2
F

+
∂x∆∂x − ∂y∆∂y

k2
F

+
∆(∂2

x − ∂2
y)

k2
F

,

(A7)
which can also be written as

∆̂ =
{∂x, {∂x,∆(r)}}

k2
F

− {∂y, {∂y,∆(r)}}
k2

F

(A8)

where {a, b} = (ab+ ba)/2 denotes a symmetrized prod-
uct and we have defined ∆(r) as

∆(r) ≡ π

4
k2

F

∫ ∞

0

dr′ r′3∆(r, r′) . (A9)

Eq. (A8) is equivalent to the gap operator derived by Si-
mon and Lee8 for a dxy-wave superconductor. It was later
claimed by Vafek et al.

9 that this gap operator would
not preserve the gauge invariance of the Bogoliubov-de
Gennes equations and an additional term was introduced
to fix this problem. The implicit assumption underlying
this claim is that ∆(r) (as well as ∆̂) should transform
under a gauge transformation as ∆(r) → e2iχ(r)∆(r). Us-
ing our approach, it is however easy to see that although
the gap operator ∆̂ is gauge invariant the above assump-
tion does not hold: Working to the same order as before it
follows from Eq. (A5) that under a gauge transformation
we have ∆(r, r′) → e2iχ(r)(1 + i∂α∂βχr

′
αr

′
β/4)∆(r, r′).

Plugging this into Eq. (A7), it is a straightforward exer-
cise to show that under this transformation the gap oper-
ator ∆̂ does indeed transform as ∆̂ → e2iχ(r)∆̂ such that
the local Bogoliubov-de Gennes equations are gauge in-
variant. The transformation properties of ∆(r) are more
complicated but this is no problem because the gap op-
erator is a combination of derivatives and ∆(r) and only

this combination has to transform as ∆̂ → e2iχ(r)∆̂. It
should also be noted that the derivation of the gap op-
erator and the above argument about its gauge transfor-
mation become exact in the limit where ∆(r, r′) becomes
more and more peaked at smaller and smaller r′.

APPENDIX B: EFFECTIVE ACTION OF A

VORTEX IN A BCS SUPERCONDUCTOR

In this appendix we present a simple and straightfor-
ward derivation of the effective action describing vortex
dynamics in a clean two-dimensional BCS superconduc-
tor. These complement the results of Ref. 7, which pre-
sented the corresponding results using a low energy the-
ory for a d-wave superconductor.

Our starting point is the Bogoliubov-de Gennes-like
action given in Eq. (1) without the harmonic oscillator
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potential V (R),

S =

∫

d2r dτ (ψ̄↑, ψ↓) (∂τ + HBdG)

(

ψ↑

ψ̄↓

)

. (B1)

In contrast to alternative derivations of an effective vor-
tex action we have seen, we will not expand HBdG in
powers of R. Instead, we diagonalize the Bogoliubov-de
Gennes Hamiltonian HBdG at every instant in imaginary
time τ in terms of its eigenfunctions. Using the unitary
transformation given in Eq. (11) we then obtain

S =

∫ β

0

dτ
∑

ℓ

χ̄ℓ(∂τ + ǫℓ)χℓ +

∫ β

0

dτ
∑

ℓ,ℓ′

χ̄ℓQℓ,ℓ′χℓ′ .

(B2)
Here, Qℓ,ℓ′ ≡ Qℓ,ℓ′(τ) is given by

Qℓ,ℓ′ = −Ṙ(τ)·
∫

|r|≤R0

d2r
[

u∗ℓ(r − R(τ))∂ruℓ′(r − R(τ))

+ v∗ℓ (r − R(τ))∂rvℓ′(r − R(τ))
]

. (B3)

When shifting r by R(τ), boundary terms which finally
will lead to a Berry phase need to be considered carefully.
We have therefore restricted the integration over space to
|r| ≤ R0 and will only at the end of our calculation take
the limit R0 → ∞. Doing the above mentioned shift

r → r +R(τ), we get Qℓ,ℓ′(τ) = Q
(0)
ℓ,ℓ′(τ) +Q

(1)
ℓ,ℓ′(τ) with

Q
(0)
ℓ,ℓ′(τ) = −Ṙ ·

∫

|r|≤R0

d2r
[

u∗ℓ∂ruℓ′ + v∗ℓ∂rvℓ′
]

, (B4)

and

Q
(1)
ℓ,ℓ′(τ) =

∮

|r|=R0

(dr×R) · êz

(

Ṙ ·
[

u∗ℓ∂ruℓ′ + v∗ℓ∂rvℓ′
]

)

.

(B5)
To obtain an effective action for the vortex, we can now
integrate out the fermionic degrees of freedom. It is con-
venient to first transform the imaginary-time integral in
Eq. (B2) in a Matsubara sum over fermionic frequencies
ω̃n = (2n + 1)/β. The effective action for the vortex is
then given by

SVortex
eff = −Tr ln

(

11 +
1

β
GQ

)

. (B6)

Here, G is a diagonal matrix Green function with matrix
elements 1/(iω̃n − ǫℓ), Q has as its matrix elements the
Fourier transforms of Qℓ,ℓ′(τ), and the trace is over both
ω̃n and all ℓ. Expanding the logarithm in the effective
vortex action up to second order we obtain SVortex

eff ≈
SVortex

eff,1 + SVortex
eff,2 , with

SVortex
eff,1 =

∑

ℓ

f(ǫℓ)Q
(1)
ℓ,ℓ (0) , (B7)

and

SVortex
eff,2 =

1

2

1

β

∑

ωm,ℓ,ℓ′

f(ǫℓ′) − f(ǫℓ)

iωm − ǫℓ + ǫℓ′
|Q(0)

ℓ,ℓ′(iωm)|2 .

(B8)

Here, f(ǫ) = 1/(eβǫ + 1) is the Fermi function and the
ωm = 2πm/β are bosonic Matsubara frequencies. While

Q
(0)
ℓ,ℓ′ does not give a contribution to Eq. (B7) due to

its antisymmetry, we have not included Q
(1)
ℓ,ℓ′(iωm) into

Eq. (B8) because it only contributes at higher order.
Identifying

j(r) =
1

2mei

∑

ℓ

[

u∗ℓ∂ruℓ′ + v∗ℓ ∂rvℓ′
]

(B9)

as the current and using well-known vector identities we
can rewrite SVortex

eff,1 as

SVortex
eff,1 =

2mei

β

∑

ωm

iωm

(

R(iωm) ×
[

R(−iωm)

∮

dr · j

−
∮

dr (R(−iωm)·j)
])

· êz . (B10)

Now, using j = ρsvs = ρsêθ/2mer, where ρs is the su-
perfluid stiffness and vs the superfluid velocity, we arrive
at

SVortex
eff,1 = −πρs

1

β

∑

ωm

ωm (R(iωm) × R(−iωm)) · êz .

(B11)
This is the Magnus force whose interpretation as a ge-
ometrical Berry phase is most transparent when trans-
forming back to imaginary time. Defining

S(Γ) =
1

2

∫ β

0

dτ
(

Ṙ × R
)

· êz =
1

2

∫

Γ

(dR × R) · êz

(B12)
as the area enclosed by the loop Γ we can recast Eq. (B11)
into

SVortex
eff,1 = −i2πρsS(Γ) , (B13)

which agrees with the result by Ao and Thouless who
emphasized the robustness of the Berry phase.15 Let us
now consider SVortex

eff,2 which we rewrite as

SVortex
eff,2 =

1

2β

∑

ωm,ℓ,ℓ′

f(ǫℓ′) − f(ǫℓ)

iωm − ǫℓ + ǫℓ′
ω2

m |Uℓ,ℓ′ ·R(iωm)|2 ,

(B14)
with

Uℓ,ℓ′ =

∫

d2r
[

u∗ℓ∂ruℓ′ + v∗ℓ∂rvℓ′
]

. (B15)

Neglecting the small iωm in the denominator of Eq. (B14)
and noticing that after summation over ℓ and ℓ′ the term
proportional to (R(iωm) × R(−iωm)) · êz has to vanish
we obtain

SVortex
eff,2 =

mv

2

1

β

∑

ωm

ω2
m |R(iωm)|2 =

mv

2

∫ β

0

dτ Ṙ2(τ) ,

(B16)
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where the mass of the vortex, mv, is given by

mv =
1

2

∑

ωm,ℓ,ℓ′

f(ǫℓ) − f(ǫℓ′)

ǫℓ − ǫℓ′
|Uℓ,ℓ′ |2 . (B17)

Using the formalism described in the main body of this
paper this equation can be used to calculate the mass of a
vortex in a superconductor with s- or d-wave symmetry.

To summarize, we can write the vortex action as

SVortex
eff =

mv

2

1

β

∑

ωm

R†(iωm)

(

ω2
m ωcωm

−ωcωm ω2
m

)

R(iωm) ,

(B18)

(with ωc = 2πρs/mv) which when taking the limit of
zero temperature and putting the vortex in a harmonic
oszillator potential turns into Eq. (4). While the vortex
mass can in principle be calculated microscopically it can
also be treated as a phenomenological constant.
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13 F. Gygi and M. Schlüter, Phys. Rev. B 43, 7609 (1991).
14 J. H. Han, J. S. Kim, M. J. Kim, and P. Ao, Phys. Rev. B

71, 125108 (2005).
15 P. Ao and D. J. Thouless, Phys. Rev. Lett. 70, 2158 (1993).
16 Actually, µ is minus the angular momentum of a given

eigenstate. The minus sign is due to the fact that we are
considering a vortex of positive vorticity but prefer to have
ǫµ positive if µ is positive.

http://arxiv.org/abs/cond-mat/0606001

