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From stripe to checkerboard order on the square lattice
in the presence of quenched disorder

Adrian Del Maestro, Bernd Rosenowﬂ and Subir Sachdev
Department of Physics, Harvard University, Cambridge, MA 02138

We discuss the effects of quenched disorder on a model of charge density wave (CDW) ordering on
the square lattice. Our model may be applicable to the cuprate superconductors, where a random
electrostatic potential exists in the CuQO2 planes as a result of the presence of charged dopants. We
argue that the presence of a random potential can affect the unidirectionality of the CDW order,
characterized by an Ising order parameter. Coupling to a unidirectional CDW, the random potential
can lead to the formation of domains with 90 degree relative orientation, thus tending to restore
the rotational symmetry of the underlying lattice. We find that the correlation length of the Ising
order can be significantly larger than the CDW correlation length. For a checkerboard CDW on the
other hand, disorder generates spatial anisotropies on short length scales and thus some degree of
unidirectionality. We quantify these disorder effects and suggest new techniques for analyzing the
local density of states (LDOS) data measured in scanning tunneling microscopy experiments.

I. INTRODUCTION

One of the major stumbling blocks preventing a quan-
titative confrontation between theory and experiment in
the cuprate superconductors is the influence of quenched
disorder on the experimental observations. The dopant
ions exert a significant electrostatic potential on the
CuO; plane, and so unless the ions can be carefully
arranged in a regular pattern, the mobile charge car-
riers experience a random potential.  Recent STM
observationt:2:3:4:5 clearly display that quenched random-
ness is crucial in determining the spatial modulations of
the local density of states.

There has been much recent interest in determin-
ing the nature of the spin and charge density wave
order (CDW) observed in STM, neutron, and X-ray
scattering in a variety of cuprate compounds at low
temperaturest:2:3:4:5:6.78.9 © The quenched disorder acts
on the CDW order as a “random field”, which is al-
ways a relevant perturbation at low temperatures: true
long-range order is disrupted at any finite random field
strength®. Nevertheless, one might hope that an an-
alytic treatment may be possible in the limit of weak
random fields. Many such analysest®:11:12:13:14 have been
carried out in the literature, describing states with power-
law correlations and suppressed dislocations (or related
topological defects) at intermediate length scales. At the
longest scales, dislocations always proliferate and all cor-
relations are expected to decay exponentially; no ana-
lytic treatment is possible in this strong coupling regime.
As we will discuss below, current experiments on the
cuprates are in a regime dominated by dislocations, and
there does not appear to be any significant regime of
applicability of the defect-free theory. Consequently, we
are forced to rely on numerical simulations for an un-
derstanding of experiments. We will present numerical
results over a representative range of parameters. Our
aim is to allow insights into the underlying theory by a
comparison of experimental and numerical results.

II. MODEL

A previous work by two of the authors!® studied the
influence of thermal fluctuations on density wave order
on the square lattice. Here, we will study the influence
of quenched randomness on the same underlying theory.
A generic density was defined which could be any ob-
servable invariant under spin rotations and time reversal

5p(r) = Re [@,"%= "] + Re [@,eFv ], (2.1)

where K, = (2n/a)(1/p,0), K, = (27/a)(0,1/p), and
&, , are complex order parameters which were assumed
to vary slowly on the scale of a lattice spacing.

If both amplitudes |®, , | have nonzero expectation val-
ues, the charge density is modulated in both z- and y-
directions and describes a solid on the square lattice. In
addition, if the wave length of the charge ordering is com-
mensurate with the underlying crystal, i.e. for integer p,
the density displays true long range order. For incom-
mensurate charge order, fluctuations due to finite tem-
perature will cause quasilong-range order with a power
law decay of correlation functions. If only one of the
two amplitudes |®;,| has nonzero expectation value,
the density Eq. 1)) describes unidirectional (striped)
CDW order. Again, the presence of a commensurate
lattice potential makes the order long ranged at finite
temperatures, whereas in the incommensurate case it is
quasilong-ranged.

In the incommensurate phase, in the absence of dis-
order, the most general free energy density expanded in
powers of @, ., and its gradients consistent with the sym-
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FIG. 1: The homogeneous mean field solutions of Eq. ([Z2)
for @, 4.

metries of the square lattice is given by

Fo = /er[Cl (1.0, + 10,2, [)
+ O (10,227 +10:0, ) + C10,02]10,2,|
+ 5 (12l + 12, 2) + 5 (1] + |2, %)

+ v|q>z|2|q>y|2] (2.2)
The homogeneous mean field solution of this model is
summarized in Fig. [l where the checkerboard, stripe and
liquid phase values of ®, , are shown along with the ac-
companying free energy densities.

In this work we focus on the influence of quenched dis-
order on CDW order and thus consider adding a term to
the free energy consisting of two complex random fields,
coupling directly to ®, ,

Fa=— /d% (H; @, + H; @, + c.c.) (2.3)
resulting in the total action
F=Fs +Fnu (2.4)

where the complex random fields H, (¢ = z,y) are pa-
rameterized as H,(r) = h,(r)e™ (") h, are Gaussian
distributed random variables with mean 0, and standard
deviation ho and 7, are uniformly distributed random
phases on [0, 27).

Let us confine ourselves to the condensed phase where
s < 0, and u > 0 for stability. The interesting physics are

encapsulated by the effects of altering the coupling con-
stant v and the variance of the random field hg. While v
changes the low energy ground states from checkerboard
like configurations for v < 0 (|®,]| = |®,|) to stripe like
patterns (|®,| # |®,| = 0) for v > 0, the variance ho
should destabilize both types of states.

A careful treatment of the coupling between CDW or-
der and a random electrostatic potential yields random
compression terms of the form!t h,00,, (0, = arg[®,])
omitted in the free energy Eq. (Z3). In addition, an RG
analysis of the full action Fg + Fu generates random
shear terms. Random compression and shear terms are
responsible for the power law decay of correlation func-
tions on intermediate length scales, on which the influ-
ence of topological excitations (dislocations) in the phase
fields ©,, can be neglected4.

In STM experiments, the correlation length of charge
order is found to have values ranging from? 2.5, to
roughly? 5 CDW periods. In neutron scattering experi-
ments, peak widths corresponding to correlation lengths
larger then ten CDW periods were observed®:’. The cor-
relation length describes the scale on which dislocations
proliferate, and the presence of a relatively short correla-
tion length indicates that there is no intermediate length
scale on which compression and shear terms are impor-
tant. For this reason, the omission of these terms from
the elastic energy should be justified.

IIT. NUMERICAL MINIMIZATION

Due to the presence of the two complex random fields
H,, (7), we have elected to minimize Eq. (4] numerically.
The interplay of elastic and disorder energy causes frus-
tration and gives rise to an exponentially large number of
low lying states with similar energies but very different
configurations. As these states are separated by large en-
ergy barriers, relaxation after an external perturbation is
very slow and glassy dynamics can be observed. For these
reasons, numerically finding the ground state of such a
system is a hard problem and as novel algorithms are de-
veloped and employed, even to relatively simple models,
new states with lower energies are inevitably foundS.

Gradient methods which move strictly downhill in the
energy landscape are fast, but prone to becoming stuck
in local minima and are not always able to reproduce the
results of slower ergodic methods. Simulated annealing
algorithms!” have been the most successful at thoroughly
sampling the possible configuration space by using a fic-
titious temperature. By successively lowering this tem-
perature, the resolution of finer and finer energy scales
becomes possible while avoiding the danger of being stuck
in a metastable excited state.

As a compromise we have elected to employ a combi-
nation of both greedy conjugate gradient!® and ergodic
simulated annealing*? methods. We allow for the possi-
bility of local uphill moves where the configuration up-
date involves making a downhill step in a random area



of the sample. The size of the randomly chosen region
is annealed by tracking metropolis acceptance rate. This
method faithfully reproduces quite quickly, the results of
early Monte Carlo work on the random field XY model2.

We have performed simulations for a number of lat-
tice sizes L = {20,32,48,64,100}, commensurate with
the experimentally observed:2:2 period of modulations
in the local density of states of four lattice spacings
(p = 4) and multiple realizations of disorder N,q(L) =
{200, 200, 150, 150, 100}.

Let us consider a L x L square lattice of N sites labelled
by 4, then after rescaling to give dimensionless coupling
parameters the continuum action Eq. () in units where
the lattice constant ag is set to unity and C5 = 0 takes
the form (with ©,,; = arg[®,,])

1
FrL = D) Z ZJu7j|¢u7i||q)u7j|cos(@uyi —O,,;)
p=x.y (i,5)
+ Y Y[+ Cot )@l + SRl
p=x,y 1

— 2Ry, i| Py il cos(Opi — i)

()Y [0 [0y (3.1)

with (i, ) indicating the usual sum over nearest neigh-
bors and the factor of 1/2 is inserted to avoid double
counting. The coupling matrix J, ; has diagonal el-
ements Jyi+s = Jyi+y = C1 and off diagonal cou-
plings Jy ity = Jyita = C2. We have chosen to set
C1 =C3 =1 and s = —0.1 thus restoring full rotational
symmetry of the elastic energy on scales much larger than
the lattice spacing and confining our analysis to the con-
densed phase. We have also elected to pick the value of
the quartic coupling u to ensure the condensation energy
remains constant across the critical line v = 0 by setting
u(v > 0) = —s and u(v < 0) = —(s +v/2).

IV. RESULTS

Employing this minimization procedure we obtain sta-
ble low energy field configurations like the ones shown
in Figs. B to @l For v = —0.1 and hy = 0.6 (Fig. B
we observe small circular regions less then 5 lattice spac-
ings across, where the local random field configuration
has taken a value that makes it energetically favorable to
suppress the magnitude of either ®, or ®, in its vicin-
ity. For the uncoupled theory (Fig. B) ®. , appear much
smoother and although there still exists separate regions
of stripe and checkerboard order, the interfaces between
these regions are poorly defined. We may also observe the
effects of positive v = 0.1 at the same disorder strength
as seen in Fig. @l In this case, the magnitude of either @,
or ®, is suppressed to zero over large regions of the sam-
ple leading to a ground state field configuration with well
defined domains having unidirectional order in either the
x- or y-directions.

FIG. 2: The ground state field configuration on a 100 x 100
lattice for a random field standard deviation of hg = 0.6 and
zy-interaction v = —0.1 for a particular realization of disor-
der.

FIG. 3: The ground state field configuration on a 100 x 100
lattice for a random field standard deviation of hg = 0.6 and
zy-interaction v = 0.0 for a particular realization of disorder.

We can construct the form of the density fluctuations
dp(r) (Eq. @) from the minimized value of the spa-
tially dependent order parameters to determine the ef-
fects of altering v and hg as seen in Fig. Bl For v < 0
and ho = 0.0 we observe robust checkerboard ordering
which is coherent over the entire lattice. As the variance
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FIG. 4: The ground state field configuration on a 100 x 100
lattice for a random field standard deviation of hg = 0.6 and
zy-interaction v = 0.1 for a particular realization of disorder.
The phase of &, , fluctuates strongly in regions where its
amplitude is suppressed.

of the random field is increased, dislocations in the phase
of the @, fields gradually destroy the local ordering, and
the correlation length is reduced to less than three CDW
periods for hg = 1.2. For v = 0.0 and hg = 0.0, the mean
field critical value in the disorder free theory, density fluc-
tuations in the z- and y-direction have a period of four
lattice spacings and identical amplitudes. However, the
response of the system to increasing hg is very different
than in the v = —0.1 case. For any finite amount of dis-
order, there is a significant enhancement in the size of
unidirectional correlations as the sample breaks up into
regions with the magnitude of either ®, or ®, greatly
reduced. In the clean limit with v > 0 we obtain purely
unidirectional density fluctuations. As the strength of
disorder is increased, large domains of 7/2 relatively ori-
entated appear and finally for large values of hg the sys-
tem breaks up into many such regions of varying sizes.
The presence of such strong stripeness leads to the nat-
ural definition of a local Ising-like order parameter2:

_ [2a()]2 = @y ()2
o (1) + | @y ()2

o(r) (4.1)

which measures the tendency of the system to have only
one of either ®,, or ®, nonzero over some finite area, with
a value between -1 and 1.

As a result of our direct minimization procedure, we
have calculated a full set of low energy field configura-
tions for multiple system sizes and realizations of disor-
der with zy-couplings v = {-0.1,0.0,0.1,0.2} and ran-
dom field variances hy between 0.0 and 2.0. Using this

information we can construct the disorder averaged cor-
relation functions for each system size throughout the
relevant parameter space. Two distinct types of correla-
tions are of interest. The first are simple CDW correla-
tion functions between the ®, fields given by

Gu(r) = (2u(r)®;,(0))

where p € {z,y} while the second type measures fluctu-
ations of the Ising-like order parameter Eq. (I

G(r) = (5(r)X(0))

with (- - -} indicating a spatial average in the ground state
and the over-line denotes an average over multiple real-
izations of disorder N,q(L). As L becomes large both
(®,(r)) and (3(r)) tend to zero, and the connected and
disconnected correlation functions are equivalent. Note
that the definition of Gx(r) distinguishes between regions
with strong unidirectional order with 7/2 relative orien-
tation.

For sufficiently large variances in the magnitude of the
random field, we expect that both Eqs. Z) and E3)
will be characterized by exponential decays of the form

Gu(r) ~ e~ /4
Gx(r) ~ e T/

(4.2)

(4.3)

(4.4)

where £, and {5 are their respective correlation lengths.
G.(r) and Gx(r) are shown for distances up to 40 lattice
spacings for v = —0.1,0.0 and 0.1 in Fig.

All correlations appear to decay exponentially for hg >
0.4, and the most striking differences between G, (r) and

Gx(r) can be seen at r = 0 by comparing (92(0)) and

(32(0)). The zy-interaction parameter v has little ef-
fect on the scale of the background CDW order, while
the background Ising-like order, measured by Gx(0), in-
creases by three orders of magnitude as v changes from
—0.1 to 0.1. In addition it appears that (after proper
finite size scaling) G, (0) is essentially a monotonically
decreasing function of hg from the checkerboard to stripe
parameter regime. The two insets in Fig. [ clearly show
however, that the slope of Gx(0) vs. ho changes from
positive to negative near v = 0.0.

In order to determine the decay constants associated
with G,(r) and Gx(r) we have performed a discrete
Fourier transform of the disorder averaged correlation
functions and fit them to a Lorentzian in k-space for
each linear system size, zy—interaction and random field
variance. The actual correlation length is assumed to be
equal to the width of the Lorentzian. Finite size scal-
ing was then performed for each value of v and hg, as
shown for v = —0.1 and hg = 0.6 in Fig. [ to extract
approximate infinite system size values of £, and &x.

The results of the finite size scaling procedure can be
seen in Fig. B where we plot the decay constants asso-
ciated with G, and Gyx as a function of random field
variance hg for various values of v, the error-bars in the
fits are on the order of the symbol sizes.
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FIG. 5: The density fluctuations dp(r) on a 100 x 100 lattice for v = —0.1 (left column), v = 0.0 (center column) and
v = 0.1 (right column) with ho = 0.0,0.6 and 1.2 from top to bottom for one random field configuration. The central row was

constructed using the values of @, from Figs. B through Hl

For a fixed value of v, both &, and &x decrease mono-
tonically as a function of disorder strength. The de-
pendence of correlation lengths on the xy coupling v
for a fixed random field strength is more interesting, as
both correlation lengths are non-monotonic functions of
v. Changing v from —0.1 to 0.0, the correlation length &,
increases by almost ten lattice spacings in the regime of

moderate disorder strength. This increase can probably
be attributed to the fact that for v = 0.0, our model de-
composes into two completely uncoupled unidirectional
CDWs with ordering in the z and y direction, respec-
tively. As disorder has a weaker influence on a unidirec-
tional CDW as compared to a checkerboard CDW, this
dependence of the correlation length on the value of v is



I
—h=04
- h,=0.6 |
N h,=0.8
h,= 1.0
=12

10

—~
~
~——

=
O

8
6
4
2r-

v= O 1 \""-C_j:\f'"‘\'\--\-.
! R

0 5 10152r(_)25303540

0.010 - ; i’

0.008 | . 0008

0.006 - oeose |

0.6 0.7 0.8 09 1.0 1.1

0.004

0.002

0.350 |- .
0.300 -
0.250
0.200
0.150
0.100
0.050

1.000 ¢
0.800

0.600

0.400 - S

0.200 - .
v=0.1 Tl

I I I I MY Y =

0 5 10152r(_)25303540

FIG. 6: Selected G\, and Gy correlation functions for v = —0.1,0.0,0.1 and ho = 0.4,0.6,0.8,1.0,1.2 (legend applies to all
panels) which were averaged over 100 realizations of disorder in a 100 x 100 sample. The insets show (32(0)) vs. ho for v = —0.1

(upper right) and v = 0.1 (lower right).

plausible. A further increase of v to positive values leads
to a reduction of &,.

As v controls the degree of stripe order, it is expected
that the correlation length for the Ising-like order pa-
rameter increases from only a few lattice spacings for

v = —0.1 to 20 to 40 lattice spacings for v = 0.1 in the
regime of moderate disorder strength. It is important to
note that for v = —0.1 and v = 0.0, Ising correlations
are exclusively due to disorder fluctuations. When v ap-
proaches zero coming from negative values, fluctuations
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tial decay of G, (r) and Gx(r) extracted from finite size scaled
Lorentzian widths in Fourier space. Color and symbol type
denote different values of v, closed symbols with solid lines
refer to £, and open symbols with dashed lines correspond to
&s:. The inset shows the two types of correlation lengths plot-
ted for fixed ho as a function of v. Note that the maximum
values occur at different values of the zy coupling.

of the two fields ®, and ®, are increasingly independent,
and Ising correlations increase. When moving further
into the stripe regime, we find &5 (v = 0.1) > &x(v = 0.2)
for all values of hg. This can be attributed to the sharp-
ening of domain walls between stripey regions with rel-
ative orientation 7/2 allowing them to better accommo-
date the value of the local random field, increasing their
overall length.

While £, reaches a maximum value at v = 0, {s peaks

at v = 0.1 (see inset of Fig. B). The fact that these
peaks occur at different values of v leads to the interest-
ing situation that & > &, for positive v. Hence, with
respect to the analysis of experimental data £s > &£, is
a clear signature for a striped charge order if no random
potential was present. In the limit of large v, the system
breaks up into domains with either ®, or ®, order and
the correlation lengths &, and &x become equal to each
other.

V. EMPIRICAL DETERMINATION OF
STRIPENESS

Due to the definition of our effective model for density
fluctuations on the square lattice we have the direct abil-
ity to measure the value of Eq. @Il using the ground
state values of the independent CDW order parameters
®, ,. However, as we wish to make contact with the STM
measurements discussed in Section [l it would be useful
to determine a method of analyzing dp(r) directly which
might expose any underlying local Ising-like correlations
that are not readily apparent either in real or Fourier
space.

With this goal in mind, we define an effective local
Ising-like order parameter X(r) at each point in the sam-
ple through the following procedure with more detail pro-
vided in an appendix.

1. Surround each lattice site r with a 4 x 4 box O,
(depicted in Fig. [[Il) which is “centered” at the relative
(1,1) point.

2. Define a local density-density correlation func-
tion which lives in each 4 x 4 box (the smallest that
contains enough information to resolve the wavevectors
{xK,,+K,}) that is arbitrarily assigned to the (1,1)
point. The result is N 4 x 4 matrices

Salr.r’ =) = (6p(r)0p(" ) i, (5.1)
where (--- ) _prco, indicates an average over all sites
r’ € 0O, and whose rows and columns are labeled by
the x and y components of ¥ — r” employing periodic
boundary conditions for the box. The specific form of
one of the matrices contributing to this sum is given in
Eq. @&T).

3. Perform a local discrete Fourier transform of
Eq. (&) using only those points in O,

1 —
So(r, k) = T Z So(r,r)e kT

7"6‘:‘7'

(5.2)

for k € {£K,,£K,} at each of the L x L boxes. 4. Fi-
nally, define an effective local Ising-like order parameter
as the difference of local structure factor amplitudes at
+ K, and £K, scaled by their sum in each box
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FIG. 9: A comparison between the direct (3, left-panels) and
effective (f], right-panels) Ising-like order parameters for ho =
1.0 and v = {-0.1,0.0,0.1} for a particular realization of
disorder in a 100 x 100 sample.

We may now directly compare Eqs. 1) and (E3) for
different values of v at fixed ho as seen in Fig.
The similarity between X(r) and 3(r) is striking and
shows both environs of checkerboard order (dark re-
gions, |®,(r)| = |®,(r)|) and stripe order (light regions,
[, (r)| # |9, ()] = 0).

The agreement between the left and right panels in
Fig.@can be further quantized by defining an equal point
correlator

Q= P (5.4)
where oy is the standard deviation of X(r)
ox = /(¥2(r)) - (3(r))?. (5.5)

1.0
ho

FIG. 10: A comparison of the disorder averaged magnitudes
of ¥ and X for a 100 x 100 sample as a function of the variance
of the random field. Finite size scaling appears to have little

effect on these results. Symbols show the value of (|X(r)])
while lines refer to (|3(r)]).

Using this definition we find values for Q of 0.62, 0.92 and
0.71 for hyg = 1.0 and v = —0.1,0.0 and 0.1. The smaller
correlations for v = +0.1 are due to the fact that O,
cannot be constructed symmetrically about the site r as
we need to resolve the specific wavevectors {+ K., +K,}
and thus small regions with rapid changes in ®, , (sharp
domain walls) will be poorly reproduced by the effective
field 3.

A further comparison can be made by examining the
disorder averaged values of the magnitudes of the direct
and effective Ising-like order parameters,

]
%]

(5.6)

which are shown in Fig. [ for various values of v as a
function of disorder. Again we observe significant agree-
ment between the direct and effective Ising-Like order
parameters, now having averaged over 100 realizations
of disorder. At hg = 0.0 we recover the results that in
the disorder free theory |3| should be identically zero for
v < 0 and equal to one for v > 0. Increasing disor-
der causes a smooth increase in unidirectional order for
v < 0 and a reduction for v > 0 with the effective order
parameter having a slightly larger dependence on hg. For
v = 0.0, the magnitude of Ising-like order quickly jumps
to a value near 0.5.

The concurrence between X (r) and the effective object



i(r) inferred from the scaled difference in local structure
factor peaks amplitudes at wavevectors +K, and £K,
is not surprising in the context that they are both cal-
culated from the same underlying complex fields ®, , in
the condensed phase. However, the utility of Eq. (B3)
becomes apparent when considering the plethora of ex-
perimental STM spectra where only the LDOS is mea-
sured and the underlying order is a topic of hot debate.
The current analysis of such spectra involves perform-
ing a discrete Fourier transform over the entire field of
view. In real materials, disorder plays an important role,
and short density-density correlation lengths are often
observed. Therefore, such a global Fourier transform dis-
cards a large amount of relevant local information which
could in principle be used to probe any hidden electronic
structure.

VI. THE UNCOUPLED THEORY

In the limit of large disorder a number of results can
be explained for the uncoupled theory with v = 0.

Upon examination of the various correlation lengths in
Fig. B it is apparent that &, is almost twice as large as
&sy for v = 0. This can be understood with the help of an
approximate analytical argument: for v = 0, the lattice
model Eq. (B1I) reduces to two uncoupled unidirectional
CDWs in the z- and y-directions. Concentrating on the
numerator of the Ising order parameter Eq. ([l for the
moment, in the case v = 0 the correlation function of ¥ is
then proportional to (|®,(r)[?|®,(0)]?). If fluctuations
of @, were described by a simple Gaussian theory, this
would imply &, = 2&s, which indeed is approximately
found in Fig. B

A similar approach can be used to account for the sat-
uration of [%] and |E| to 0.5 for v = 0 as seen in Fig. [T
Again if we assume uncoupled fluctuations in @, , de-
scribed by a normal distribution with mean 0 and vari-
ance o3 we can directly calculate the expectation value
of ¥ by performing integrals in polar coordinates

<(|‘1>aa|2 - I‘I’yl2)2> _1
(1Pa? +[®y[2)2 /2

VII. CONCLUSIONS

(6.1)

This paper has characterized the correlations in a dis-
ordered CDW state on the square lattice as a function of
the parameter v in Fg (which measures the degree of uni-
directionality of the CDW order, v < 0 corresponding to
checkerboard states), and the random field strength hy.
We introduced a number of diagnostics to study the na-
ture of the disordered state: the correlation lengths, £,
of the CDW order, the correlation length &s; of the Ising
order associated with the uni-directionality, the on-site
amplitudes G, (0), Gx(0), of these orders, and also dis-

cussed in Section [Vl how closely related quantities could
be measured directly in experiments.

Our results are presented in detail in Sections [V
and [V, and here we highlight some notable features:

(i) As is clear from the insets of Fig. @, for v < 0, the
strength of the Ising order increases with random-field
strength, while the opposite is true for v > 0.

(4) The correlation length s > £, only for v > 0, and
this can serve as a diagnostic for the sign of v in an anal-
ysis of the experiments.

(#44) We showed that the correlator Sp in Eq. (&) can
serve as a very faithful diagnostic of the structure of 3,
and this should easily enable us to place experimental
observations in the appropriate parameter space of the
present theory.

A full interpretation of the experiments should away
a direct analysis of the experimental data along the
lines proposed here. Nevertheless, a comparison of the
qualitative structure of the figures presented here (es-
pecially Fig BH) with e.g. the STM observations of
Cag_,Na,CuO,Cly by Hanaguri et al. does indicate that
this system has a value of v close to zero and likely pos-
itive.

For the future, our approach offers an avenue to quan-
titatively correlate the STM experiments with neutron
scattering. In particular, after determining the appropri-
ate parameter regime of Fg from an analysis of the STM
data, the resulting dp(r) configurations can be used as an
input to determining the dynamic spin structure factor,
as discussed in recent works22:23,

While this paper was being completed, we learned of
related results obtained by Robertson et al.24.
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APPENDIX A: LOCAL ISING-LIKE ORDER
PARAMETER

This appendix provides more detail on the method
used in the calculation of the effective local Ising-like or-
der parameter (r) described in Sec. [Vl



FIG. 11: One of N 4 x 4 boxes used in the calculation of
Sa(r,r’ —r"). Here, O, has relative site labels 0 to 15 and
is centered at site 5 with ' currently located at site 10.
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Consider Fig. [Tl which shows one of N 4 x 4 boxes O,
where the sites contained within the box are given the
relative labels 0 through 15 and it is “centered” at the
(1,1) point here labelled 5.

For the particular case shown in Fig. [l with v’ = 7/,
the matrix which contributes to the average So(r, r'—r")
in Eq. (&) is written out explicitly as

dp1a+9ps 0ps + 0p7 +0p13 + 0p15 2(6pa + 0p12) 0ps + 0p7 + 0p13 + 0p1s

Sa(r,r —r") =

dp10 26p2 2(6p1 + 0p3) 46po 2(6p1 + 0p3)
16 | 0p1a+0ps Ops + 0p7 +dpiz +0p1s 2(dpa +p12) dps + p7 4 dp1z + dp1s

dp1o dpg + 0p11 20ps dpg + 0p11

where we have employed the shorthand notation dp; =
dp(r}). After performing the average over all ' —r” € O,
i.e. calculating all 16 matrices at each site, Sg(r, ' —r")
is Fourier transformed over the relative coordinates in

(A1)

the box using Eq. (&2 to give So(r, k). This expression
may then be evaluated at £ K, and £K, using Eq. (&3
to give the effective Ising-like order parameter (7).
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