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Magnon decay in gapped quantum spin systems

Alexei Kolezhuk∗ and Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138

In the O(3) σ-model description of gapped spin systems, S = 1 magnons can only decay into
three lower energy magnons. We argue that the symmetry of the quantum spin Hamiltonian often
allows decay into two magnons, and compute this decay rate in model systems. Two magnon decay
is present in Haldane gap S = 1 spin chains, even though it cannot be induced by any allowed
term written in powers and gradients of the σ-model field. We compare our results with recent
measurements of Stone et al. on a two-dimensional spin system.

PACS numbers: 75.10.Jm, 75.40.Gb

Introduction.– Stone et al.1 have recently studied
the spectrum of the S = 1 magnon excitations of
the gapped quasi-two-dimensional spin dimer compound
(C4H12N2)Cu2Cl6 (piperazinium hexachlorodicuprate,
PHCC). They observed that the magnons become un-
stable when their energy crosses the lower boundary of
the two-magnon continuum, and measured magnon life-
times. These observations are interesting because, at first
glance, they appear to be in conflict with the standard
phenomenological description of low energy S = 1 exci-
tations in a confining spin-gap systems. This model2,3

is expressed in terms of a field n(x, τ), where x is a
d-dimensional spatial coordinate, τ is imaginary time,
and n is three-component vector in spin space. Using
Landau-Ginzburg arguments, the effective action for the
magnons, near the minimum of their dispersion, can be
written in the form

Sn =

∫
ddxdτ

{ 1

2g

(
(∂τn)2 + c2(∂xn)2

)
+

u

2

(
n2 − α

)2
}

Harmonic quantum fluctuations of n about n = 0 in a
renormalized effective potential then constitute the triply
degenerate magnon in the spin-gap state. In this picture,
it is clear from the quartic non-linearity in Sn that this
magnon can only decay into three magnons, and decay
into two magnons is prohibited.

It is useful to recall the constraints imposed by sym-
metry more carefully for the familiar case of a spin S
antiferromagnetic chain (d = 1). This model has spin ro-
tation symmetry, time reversal symmetry (under which
τ → −τ and n → −n), reflection symmetry about sites
(under which x → −x and n → n), and reflection sym-
metry about centers of bonds (under which, in the con-
tinuum limit, x → −x and n → −n). These symmetries
are very restrictive and only allow a single term with
three powers of n: the topological ‘θ-term’2

Sθ = iθ

∫
dxdτ n · (∂xn × ∂τn) , (1)

in the fixed length limit u → ∞ with α = 1 and θ quan-
tized at θ = S/2. In this limit the integrand in Sθ is
quantized in integer multiples of 4π, and only then is
e−Sθ = 1 invariant under all symmetries noted above.
However, we are interested in the nature of the non-linear

terms as they act on the fully renormalized quasiparticles
of the gapped antiferromagnet with integer S. As noted
above, these can be considered to be harmonic fluctu-
ations of a renormalized field n about n = 0, and the
amplitude of this renormalized field is not constrained
to be unity. For such a field n, it is easy to see that
there is no term with three powers of n, and arbitrary
spatial and temporal gradients which is invariant under
the symmetries.

Here we will examine the issue of two magnon decay us-
ing a lattice formulation. Our analysis begins below with
a microscopic Hamiltonian appropriate for PHCC. We
will compute the lifetime due to decay into two magnons,
and compare our results with the observations of Stone et
al.1 The confrontation between theory and experiments
places new constraints on the values of the microscopic
exchange constants. We then show that similar processes
also exist for a generic S = 1 spin chain, and are consis-
tent with all symmetries of the lattice Hamiltonian; this
is the case even though such processes do not appear in
any perturbation of the continuum theory.

Magnon lifetimes in PHCC.– The Cu2+ spins in PHCC
form a lattice of dimers in the (ac) crystalline plane as
shown in Fig. 1. We will denote the interdimer exchange
interactions as Jσσ′

δ , where σ, σ′ = 1, 2 label two spins
inside a dimer and the vector δ = (m, n) ≡ mâ + nĉ

connects the dimer centers. For a description of such
systems it is convenient to use the so-called bond-boson

formalism4 where spin- 1
2 operators S1, S2 at each dimer

(see Fig. 1) are represented in terms of three hardcore

bosons tα, α = (x, y, z) which correspond to three excited
triplet states of the dimer:

Sα
1,2 = ±1

2
(tα + t†α) +

1

2
iεαβγtβt†γ . (2)

If one assumes the isotropic Heisenberg coupling between

dimers, the spin Hamiltonian takes the form Ĥ = Ĥ0 +H
2

+Ĥ3 + Ĥ4, where Ĥ0 = J0

∑
r t†rαtrα is determined by

the intradimer exchange J0, and Ĥ2,3,4 correspond to the
interdimer interaction. (The index r here labels the sites
of the lattice formed by dimers).

The quadratic part of the interdimer Hamiltonian

Ĥ2 =
1

2

∑

(rr′)

Jeff
r−r′ (t†rαtr′α + trαtr′α + h.c.), (3)
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as well as the four-particle interaction Ĥ4,

Ĥ4 =
1

2

∑

(rr′)

Jeff
rr′

{
t†rαt†r′αtrβtr′β − t†r′αt†rβtrαtr′β

}
,

depend only on specific combinations Jeff
r−r′ of exchange

couplings between the dimers located at sites r and r′,

Jeff
r−r′ =

1

2
(J11

r−r′ + J22
r−r′ − J12

r−r′ − J21
r−r′). (4)

The three-magnon term Ĥ3 depends on different com-
binations of exchange constants Fr−r′ that are nonzero
only if the interdimer coupling is not symmetric with re-
spect to the interchange of the spin indices 1 and 2:

Ĥ3 =
i

2

∑

(rr′)

εαβγFr−r′ (t
†
rαt†r′βtr′γ − t†r′αt†rβtrγ)+h.c.

Fr−r′ =
1

2
(J22

r−r′ − J11
r−r′ − J12

r−r′ + J21
r−r′). (5)

This type of interaction arises generically in the theory;
however, it is usually neglected in practical calculations.

If one neglects magnon interaction completely, taking
into account only the quadratic part of the Hamiltonian

Ĥ0 + Ĥ2, and uses this approximation to describe the
experimentally observed magnon dispersion and to find
out the microscopic exchange couplings, one can obtain
estimates for the intradimer exchange constant J0 and
for “effective couplings” Jeff

r−r′ only. The individual cou-

plings J11
r−r′ , J12

r−r′ , etc. cannot be determined in this
noninteracting magnon approximation that is commonly
used by experimentalists for the description of the dis-
persion data (see, e.g., Refs. 5,6,7).

Since an analytical treatment of the full interacting
Hamiltonian for realistic models does not seem feasi-
ble, one has to resort to extensive numerical calculations
to extract the coupling information from the dispersion
data. Such calculations based on cluster expansions were
actually performed for various spin dimer materials;8,9,10

however, even in this approach the problem remains diffi-
cult because for weak interdimer interactions the magnon
dispersion is rather insensitive to the variations of the
individual exchange couplings which keep the “effective”
interactions Jeff

r−r′ constant.
The magnon dispersion in PHCC was studied exper-

imentally in Ref. 5; the spin excitations were found to
have a spectral gap ∆ ≈ 1 meV and a bandwidth of about
1.8 meV. It was shown that the observed spectrum is well
described within the noninteracting magnon approxima-
tion, if one assumes the existence of effective interdimer
interactions Jeff

δ with δ = (1, 0), (0, 1), (1, 1), (1,−1),
(2, 0), and (0, 2), with J0 ≃ 2.33 meV, Jeff

(1,0) ≃ 0.44 meV,

Jeff
(0,1) ≃ 0.23 meV, Jeff

(1,1) ≃ Jeff
(1,−1) ≃ −0.084 meV,

Jeff
(2,0) ≃ −0.073 meV, and Jeff

(0,2) ≃ −0.047 meV.11 In this

approximation, the magnon dispersion takes the form

ε(k) = {J2
0 + 2J0Bk}1/2, Bk =

∑

δ

Jeff
δ cos(k · δ) (6)

c

a
2

1

2

1

r r’

(10)

(1,−1)

FIG. 1: A schematic view of the coupled spin dimer structure
in the crystallographic (ac) plane of PHCC, and the notation
used. Two spins in each dimer are distinguished by the spin
index σ = 1, 2, and each dimer is labeled by the position of
its center r. Exchange couplings between individual spins are

then denoted as J
(σσ

′)

r−r′ . In PHCC, the most important ex-

change links are given by r−r′ = (1, 0), (0, 1), (1, 1), (1,−1),
and possibly also (2, 0) and (0, 2) (in lattice units).

and the quasiparticle operators bk are connected to the
dimer triplet-creating operators tk through the stan-

dard Bogoliubov transformation tk = ukbk + vkb†
−k,

where the coefficients uk = coshxk, vk = sinhxk, with
tanh(2xk) = −Bk/(J0 + Bk) and sign(vk) = −sign(Bk).

The four-magnon interaction term Ĥ4 leads in fact to

a renormalization of the amplitudes Jeff
δ in Ĥ2 and can

be ignored as far as one uses the values of the effective
couplings Jeff

δ obtained from a comparison with the ex-
perimental data, since the above renormalization is al-
ready included in this way. The same argument applies
to the hardcore constraint which, for low density of vir-
tual triplet pairs, in the leading approximation can be
shown just to renormalize the self-energy of a magnon.12

The three-magnon term Ĥ3 does not contribute to the
dispersion in the first order of the perturbation theory,
and its main physical effect is to produce an instability of
magnons with energies above the two-particle continuum
threshold. In terms of transformed quasiparticle opera-
tors bk this interaction can be written as

Ĥ3 =
∑

(xyz)

∑

12

M12 b†1+2,z b1,x b2,y + · · · + h.c.,

M12 =
∑

δ

Fδ

{
(u1+2 − v1+2)(v1u2 − v2u1)

× sin(k1 · δ + k2 · δ) (7)

− (u1 − v1)(u1+2u2 + v1+2v2) sin(k1 · δ)

+ (u2 − v2)(u1+2u1 + v1+2v1) sin(k2 · δ)
}

,

where (xyz) denotes a cyclic summation over the triplet
component indices, (1, 2) ≡ k1,2, and the remaining
terms describing three-particle creation are omitted for
clarity. The decay rate Γ(p) of a magnon with the wave
vector p according to the Fermi golden rule is

Γ(p) = 2π
∑

k

|Mk,p−k|2δ
(
ε(p) − ε(k) − ε(p − k)

)
. (8)

After performing the delta-function integration, the lat-
ter expression is reduced to a one-dimensional quadrature
which can be computed numerically.
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FIG. 2: Magnon linewidth Γ(p) in PHCC as a function of
the wave vector p = (h,−h) [r.l.u.] in the (ac) plane. The
solid line displays the result of the bond-boson calculation
(see text) and the symbols correspond to experimental data
of Stone et al.1

In Ref. 9 the magnon dispersion in PHCC was ana-
lyzed on the basis of the fourth-order cluster expansion
calculation, and it was concluded that a good fit to the
data of Ref. 5 can be achieved even without including the
links with δ = (2, 0) or (0, 2) (for those latter links, the
existence of exchange paths seems questionable). Since
we are not taking into account higher-order effects, we
will adopt the coupling values Jeff

δ proposed in Ref. 5 for
the sake of consistency; one may argue that this is not
going to introduce any serious problem since the role of
Jeff

δ in our calculation here is just to mimic the correct
behavior of ε(k) and the Bogoliubov factors uk, vk.

Another conclusion of Ref. 9 was that the links with
δ = (1, 1) and (1,−1) are fully due to the “diagonal”
couplings of the J12 and J21 type, respectively, while the
other interdimer links have symmetric couplings in the
sense that J12

δ = J21
δ and J11

δ = J22
δ , so that all Fδ = 0

except F(1,−1) ≈ −F(1,1) ≈ 0.09 meV.

We have fitted the experimental data1 for Γ as a func-
tion of the wave vector p in the (ac) plane, using the am-
plitudes Fδ as fitting parameters. If one assumes that all
the individual exchange couplings are antiferromagnetic,
a natural constraint arises that the absolute value of the
amplitude Fδ cannot exceed the absolute value of the
corresponding Jeff

δ . It turns out that the observed mag-
nitude of the linewidth1 (the maximum of Γ ≃ 0.13 meV
is reached at p = (0, 0)) cannot be achieved if one adopts
the coupling pattern proposed in Ref. 9: the contribution
of F(1,1) and F(1,−1) alone is definitely insufficient (with
Γ(0) one order of magnitude below the observed value).
The linewidth is rather insensitive to the value of F(0,1):

even at F(0,1) = Jeff
(0,1) the corresponding contribution to

Γ(p = 0) is of the order of 10−4 meV. Similarly, inclusion
of longer links like F(2,0) and F(0,2) does not help, since

at their “full strength” (i.e., at Fδ = Jeff
δ ) they yield the

contributions to Γ(0) of the order of several µeV. The
only remaining way to explain the observed values of Γ

is to assume that F(10) 6= 0; indeed, as shown in Fig. 2, a
reasonable fit of the experimental data is achieved with
F(1,0) = 0.7Jeff

(1,0), F(1,1) = −Jeff
(1,1), and F(1,−1) = Jeff

(1,−1).

The shown fit is not unique: the signs of Fδ were chosen
to provide the maximum enhancement of the total am-
plitude of the matrix element M12, and the amplitudes
F(2,0) and F(0,2) for “questionable” links were dropped
altogether, so one should view this result as a sort of
“lower bound” for F(1,0). Nevertheless, our results are
a clear indication that the interdimer interactions along
the (1, 0) link in the (ac) plane are asymmetric with re-
spect to the spin index interchange 1 ↔ 2. It is worth
noting that the signs of F(1,1) and F(1,−1) agree with the
pattern proposed in Ref. 9.

In PHCC, the crystal symmetry makes all J11 and
J22 equal, so the only asymmetry giving rise to nonzero
amplitudes Fδ can be the difference between J12

δ and
J21

δ . The existence of a large Fδ for the strongest (1, 0)
link implies that the magnitudes of the individual cou-
plings Jσσ′

(1,0) are considerably larger than the effective

“dimer” exchange constant J ≡ Jeff
(1,0) ≃ 0.44 meV. For

instance, if one assumes for simplicity that J12
(1,0) = 0

then J11
(1,0) = J22

(2,0) ≃ 1.7J and J21
(1,0) ≃ 1.4J ; another,

although less likely possibility is that the “diagonal” cou-
plings have different signs, J12

(1,0) < 0 and J21
(1,0) > 0.

Magnon decay in S = 1 Haldane chains.– Let us now
turn to the S = 1 spin chain. Indeed, this model can
also be viewed as a chain of S = 1

2 dimers with an-
tiferromagnetic intradimer exchange 4J and an addi-
tional local constraint symmetrizing the edge spins of
every two neighboring dimers, and thus coupling them
into an effective spin-1, see Fig. 3. This constraint
can be taken into account ‘on average’ at a mean-field
level by adding the Lagrange multiplier term of the form
−µ

∑
n(S1,n+1 ·S2,n− 1

4 ), playing the role of a ferromag-
netic “Hund’s rule” interdimer interaction which has to
be determined self-consistently. It is then obvious that
the interaction between the dimers is asymmetric and the
effective Hamiltonian will contain the term of the form
(5) with a single F1 = 1

2µ. It is easy to see that this term
is consistent with all symmetries of the initial Hamil-
tonian, e.g., it satisfies the reflection symmetry about
the n0-th bond, which in the bond-boson language corre-
sponds to the transformation tn,α 7→ −t2n0−n,α, as well
as the symmetry of reflection about the n0-th “site” (i.e.,
the interdimer bond to the right of the n0-th dimer, see
Fig. 3a), which corresponds to tn,α 7→ −t2n0+1−n,α.

Then, a simple golden rule calculation yields the
magnon linewidth in the Haldane chain as a function of
the its momentum p:

Γ(p) = |Mk0,p−k0
|2/|ε′k0

− ε′p−k0
|, (9)

where k0 is the solution of the equation εk0
+εp−k0

= εp,

and εk = 2(4J2 + µJ cos k)1/2 is the single-magnon dis-
persion. Using the known value of the Haldane gap
∆ ≃ 0.4J , one can fix the renormalized value of µ to
be slightly below 4J . According to (5), the matrix ele-
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4J>0 −µ<0

n0a)

b)

FIG. 3: a) representation of spin-1 Haldane chain as a spin- 1
2

chain with symmetrized spin- 1
2

degrees of freedom (denoted
by the ovals); b) at the mean-field level the symmetrization is
equivalent to a ferromagnetic “Hund’s rule” interaction −µ.

ment has the structure Mk,p−k = fp(k) − fp(p − k), so
the linewidth becomes zero at the wave vector threshold
p = pc, defined by ε(pc) = 2ε(pc/2) (here pc ∈ [π, 2π]); it
is exactly the point of crossing with the the two-particle
continuum. Above the continuum threshold, in the vicin-
ity of pc the linewidth grows as a square root:

Γ(p) ≃ 2|f ′(pc/2)|2
|ε′′(pc/2)|

∣∣∣
ε′(pc) − ε′(pc/2)

ε′′(pc/2)

∣∣∣
1/2√

p − pc. (10)

It is notable that two-magnon decay processes, strictly
forbidden in the Haldane chain within the effective con-
tinuum field theory, nevertheless survive in the full lattice
description.

Using the above simple estimate for µ, one can see
that the magnon linewidth in the Haldane chain grows
fast to rather large values, e.g., at p = 0 one obtains
Γ ≃ 3.4J , to be compared to ε(p = 0) ≃ 5.6J . Such
a large value of the linewidth arises because the effec-
tive “interdimer” interaction µ is not small compared to
the “intradimer” coupling 4J . An experimental observa-
tion in that case would show a very fast disappearance of
quasiparticle excitation above the continuum threshold,
similar to the picture observed recently13 in a spin ladder

compound (CH3)2CHNH3CuCl3. However, one should
bear in mind that the behavior of linewidth in the vicinity
of the threshold depends on the details of the wave vector
dependence of the matrix element, which cannot be ac-
counted for in the simple qualitative description sketched
above: for instance, if f ′(pc/2) is anomalously small for
some reason, then one has to take into account higher
derivatives of f(p) and (10) gets replaced by a sum of
competing terms, Γ(p) ∝ ∑

n=1 An(p − pc)
n. Recently,

a finite magnon linewidth slowly emerging at pc ≃ 0.6π
was observed14 in the S = 1 chain material CsNiCl3. It
would be interesting if future experiments could provide
more information on two-magnon decay in Haldane spin
chain.

Summary.– To conclude, we have shown that ele-
mentary excitations in a gapped dimerized spin sys-
tem can become unstable above the two-particle contin-
uum threshold, and that the dependence of the magnon
linewidth on the wave vector can be used as an additional
input (complementing the magnon dispersion) to extract
the information on the exchange interactions pattern. On
the basis of fitting the recent results1 on the magnon
linewidth in the quasi-two-dimensional spin dimer mate-
rial PHCC, we conclude that interdimer couplings along
the a axis in this material are strongly asymmetric, con-
trary to the previously assumed9 pattern. We argue that
three-magnon interaction, which makes possible the in-
stability of a single-magnon excitation against the decay
into two particles, is generically present in other gapped
spin systems such as spin-1 Haldane chains.
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