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Universal relaxational dynamics of gapped one dimensional models in the quantum
sine-Gordon universality class
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A semiclassical approach to the low-temperature real time dynamics of generic one-dimensional,
gapped models in the sine-Gordon model universality class is developed. Asymptotically exact
universal results for correlation functions are obtained in the temperature regime T ≪ ∆, where ∆
is the energy gap.
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Real time, non-zero temperature (T ), correlation func-
tions of quantum many body systems are directly re-
lated to many experimentally measurable quantities. For
strongly interacting systems, there are few quantitative
results on the relaxation and transport processes that
are believed to occur at long times at any T ̸= 0. Stan-
dard perturbative methods, as well as many numerical
approaches, work best in imaginary time, but the ana-
lytic continuation of such imaginary time results to real
time is most dangerous, and often fails, in the low fre-
quency limit. Among the few exact results available are
those describing relaxational behaviour of an order pa-
rameter at conformally invariant critical points (obtained
by exploiting the conformal invariance of the system), or
by semiclassical methods deep in an ordered state [1],
both in dimension d = 1. In an important recent de-
velopment, Altshuler and Tsvelik [2] (AT) obtained real
time order parameter correlations for the integrable d = 1
quantum Ising model by the form-factor expansion, and
their results were in precise agreement with the semiclas-
sical predictions [1].

AT also argued that their results could be extended to
other gapped, integrable systems, and in particular, to
the sine-Gordon model; some results for another massive
integrable model (the O(3) non-linear sigma model) had
also been obtained earlier by Fujimoto [3] and Konik [4].
In this paper, we obtain dynamic non-zero T correla-
tors of gapped one dimensional models in the universal-
ity class of the d = 1 quantum sine-Gordon field theory
using a semiclassical method [1]: our results are expected
to apply generic, non-integrable models [5]. Interestingly,
as we describe in detail below, our semiclassical results
are qualitatively different from those of AT. One likely
origin of this difference is that the long time transport
and spectral [6] properties of integrable models, with in-
finitely many conserved charges [7], are genuinely distinct
from those of more generic models; the latter have only
a small number of conserved charges and are described
by the semiclassical theory. The generic quantum Ising
model has only a single conserved charge (the energy den-
sity) and was possibly too simple a model to expose the

above distinction. At the end of this paper, we will also
mention other possible sources of the difference between
our sine-Gordon results and those of AT and others [3, 4].

The imaginary time (τ) action of the sine-Gordon
model is

A =
c

16π

∫ 1/T

0
dτdx

[

(∂xΦ)2 +
1

c2
(∂τΦ)2 − g2 cos(γΦ)

]

where Φ is the sine-Gordon field, and c has dimensions
of velocity. It is assumed that the full integrability of the
model is broken either by additional terms not shown
above, or by an ultraviolet cutoff that does not preserve
integrability. Such perturbations are always present in
any experimentally relevant realization (see Ref. 7 for
examples of experimental applications), but will be left
implicit in our discussion below; we will thus freely refer
to the sine-Gordon model when we mean generic models
in this universality class. In the integrable sine-Gordon
theory, g is relevant for γ < 1, giving rise to a gapped
phase with particle-like excitations. For 1/

√
2 < γ < 1,

the interactions between these particles are purely repul-
sive and there are no bound states. It is expected that a
similar ‘purely repulsive’ regime exists without full inte-
grability.

Our focus here is on the space and time dependent
correlator of eiηΦ defined in the usual way for arbi-
trary η: CΦ(x, t) ≡

〈

eiηΦ(x,t)e−iηΦ(0,0)
〉

, where Φ(x, t) ≡
eiĤtΦ(x)e−iĤt, Ĥ is the Hamiltonian of the system, and
the angular brackets indicate average over the equilib-
rium density matrix of the system. Below, we shall ob-
tain the space-time dependent C(x, t) for temperatures
T ≪ ∆ (∆ is the gap) in the purely repulsive regime of
the gapped phase mentioned above. Our answer will be a
universal scaling function of x, t, ∆ and c, a velocity that
enters the dispersion relation of the solitonic excitations.

There are three key observations that allow our exact
computation for T ≪ ∆. The first is that as there is
an excitation gap, and the lowest lying excitations above
the gap are ‘charged’ particles (with charges ±1) that
represent solitons and anti-solitons in the sine-Gordon
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field. For T ≪ ∆, the particle dispersion ϵ(p) may be set
equal to its universal low momentum form ϵ(p) = ∆ +
p2c2/2∆, and they may be treated semiclassicaly using
Maxwell-Boltzmann statistics with a velocity probability
density P (v) ∼ e−∆v2/2c2T . Indeed, their density

ρ = 2e−∆/T

∫

dp

2π
e−p2c2/(2∆T ), (1)

while their r.m.s. velocity v is vT = c(T/∆)1/2. The
mean inter-particle spacing ∼ e+∆/T is thus much larger
than the thermal de-Broglie wavelength ∼ c/(∆T )−1/2,
and the particles behave semiclassically [1].

The second observation is that collisions between these
particles are described by their two-particle S-matrix,
and only a simple universal low-velocity limit of this S-
matrix is needed in the low T limit since the particle
‘rapidity’ ∼ vT /c ≪ 1. In this limit, in the purely re-
pulsive regime of the gapped phase, the S-matrix for the
process in Fig 1c is generically [7]

Sm1m2

m′

1
,m′

2

= (−1)δm1m′

2
δm2m′

1
. (2)

In other words, the excitations behave like impenetra-
ble particles which preserve their charge in a collision.
Energy and momentum conservation in d = 1 require
that these particles simply exchange momenta across a
collision (Fig 1c). The (−1) factor in Eq. (2) can be
interpreted as the phase-shift of repulsive scattering be-
tween slowly moving bosons in d = 1. Indeed, the simple
generic form of Eq. (2) is due to the slow motion of the
particles [5], and is not a special feature of relativistic
continuum theory. It is also worth noting that at special
free fermion points in the gapped phase (when a map-
ping to non-interacting fermions exists), the repulsive in-
teraction between the solitonic particles goes to zero and
the S-matrix is then perfectly transmitting i.e. it equals
(−1)δm1m′

1
δm2m′

2
(for generic, non-integrable models, ac-

cessing this free fermion behavior requires tuning an in-
finite number of couplings, and so this point is not phys-
ically relevant). The dynamics in this special case is ex-
pected to be very different from the generic behavior, and
will be discussed below as a prelude to our results in the
generic case.

Finally, we note that in the semiclassical limit at low
temperatures, for most of the time, the sine-Gordon field
Φ takes one of the values

Φ =
2πn

γ
(3)

where n is an integer which increases (decreases) upon
crossing in the positive x direction a soliton (anti-soliton)
trajectory. A sample set of soliton trajectories in space-
time are shown in Fig 1, along with the associated values
of n. Notice the difference in the n values between the
transmitting soliton free-fermion case, and the generic
reflecting soliton case described by Eq. (2).
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FIG. 1: A typical set of particle trajectories contributing to
CΦ(x, t). Each trajectory represents paths moving both for-
ward and backward in time. The charge moving on a tra-
jectory is indicated by different colors (color online): Red
corresponds to solitons (m = +1) and blue to anti-solitons
(m = −1). The numbers in the domains are the local values
of the integer n in Eq. (3)

We now present our final results for CΦ(x, t), deferring
their derivation till later. For the transmitting soliton
case in Fig 1a, an elementary computation shows that

CΦ(x, t) = A exp
(

−2ρ sin2(πη/γ) ⟨|x − vt|⟩
)

, (4)

where the angular brackets represent an average of v over
P (v) and A is an η and γ dependent amplitude [2] related
to the vacuum expectation value of eiηΦ. Remarkably,
Eq. (4) is precisely the result obtained by AT for the
integrable sine-Gordon model for generic values of γ even
away from the free-fermion point. So it appears that the
dynamics of the integrable model is rather like that of
non-interacting particles.

For generic reflecting soliton case in Fig 1b, with the
S-matrix in Eq. (2) (which we claim is always the ex-
perimentally relevant case), we obtained a very different
result. We found

CΦ(x, t) = Ae−(q̃r+q̃l)

[

U0(2iq̃rΘ, 2i
√

q̃rq̃l) +

U0(2iq̃lΘ, 2i
√

q̃r q̃l) − iU1(2iq̃rΘ, 2i
√

q̃r q̃l)

−iU1(2iq̃lΘ, 2i
√

q̃r q̃l) − I0(2
√

q̃r q̃l)

]

, (5)

where Θ ≡ cos(2πη/γ), q̃r = ρ
∫ x/t
−∞ dvP (v)(x − vt), q̃l =

ρ
∫∞

x/t dvP (v)(x − vt), I0 is the modified Bessel function,

and U0,1 are the Lommel functions of two variables[8].
(Note that all x and and t dependence is through q̃r and
q̃l which can both be written as functions of the scaling

variables x̄ = ρx ≡ x/ξx and t̄ = cρ
√

T
2π∆ t ≡ t/ξt.)
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This remarkable expression is qualitatively different in
its asymptotic behavior for large t and x from the cor-
responding result at the free fermion point. One way to
see this is to obtain the correlator of the soliton charge
density ρ = (γ/2π)∂xΦ, Cm(x, t) ≡ ⟨ρ(x, t)ρ(0, 0)⟩, by
expanding Eq. (5) to order η2 and taking two x deriva-
tives. The result is identical in form to the diffusive corre-
lation function obtained for the conserved (spin) density
in Ref 5 using the analysis of Refs 9, 10—here, the dif-
fusion constant has value Dm = c2

2∆e∆/T . A more direct
indication of diffusive behavior follows from an asymp-
totic analysis of our result. For instance, for large t and
x ∼

√
t, using q̃r/l ≃ t/ξt ± x/2ξx and standard results

for the asymptotics of Bessel and Lommel functions[8],
we find:

CΦ(x, t) ≃ A
(

1 + Θ

ρ(1 − Θ)

)

e−x2/(4DΦt)

(4πDΦt)1/2
(6)

where the diffusion constant DΦ = c
√

T/ρ
√

2π∆ =
c2

2∆e∆/T is identical to the diffusion constant Dm that
describes the diffusive behaviour of the soliton charge cor-
relator. This may be interpreted by noting that the field
values Φ(x, t) and Φ(0, 0) are perfectly correlated if the
space-time points (0, 0) and (x, t) lie in the same domain,
and this happens when the domain walls bounding this
domain diffuse from the neighbourhood of the origin to
the space-time point (x, t); the equality of the two diffu-
sion constants then suggests that such events dominate in
the average over all space-time histories. In this context,
it is however important to bear the following subtlety in
mind: The asymptotic expression Eq. (6) is only valid
as long as |Θ| < 1 − xξt/(2tξx), and as such cannot be
used directly to expand in η about η = 0 (which of course
corresponds to Θ = 1). Put another way, the long time
limit does not commute with the Θ → 1 limit.

We now describe the derivation of Eqs. (4) and (5).
We represent C(x, t) as a ‘double time’ path integral [1],

with the e−iĤt factor generating trajectories that move
forward in time for each particle, and the eiĤt producing
trajectories that move backward in time. In the classical
limit, stationary phase is achieved when the trajectories
are time-reversed pairs of classical paths (Fig 1). Each
trajectory has a charge label which obeys Eq. (2) at each
collision; however as each collision contributes both to
the forward and backward trajectories, the net numeri-
cal factor is simply +1. All of this implies [1] that the
straight lines (rays) yµ(t) = yµ + vµt (µ = 1, 2, . . .M
)in Fig 1 are independently distributed with a uniform
distribution in space for the intercepts yµ, and with in-
verse slope determined by the velocities vµ which are
independently distributed according to the probability
density P (v). The charge, m, is assigned randomly to
each trajectory at some initial time t = 0 with probabil-
ity ρm/ρ = 1/2, but then evolves in time as discussed
above (Fig 1). We have assumed a large system size L,

and will eventually take the limit L → ∞, M → ∞ with
total density ρ = M/L fixed and given by Eq. (1). Note
that the charge travelling on a ray changes in time when
the S-matrix is reflecting, and charges on rays are mu-
tually uncorrelated only at t = 0—it is the charges mk

(k = 1, 2, . . .M labelled starting from the left) travelling
on the complicated zig-zag trajectories xk(t) that remain
uncorrelated and constant in time. Conversely, when the
S-matrix is perfectly transmitting at special free-fermion
points in the phase diagram, charges on rays remain un-
correlated and constant in time (since the rays and the
trajectories coincide in this case). In both cases, the field
Φ(x, t) is given in terms of soliton trajectories by

Φ(x, t) =
2π

γ

∑

k=1

mkθ(x − xk(t)). (7)

To proceed further in the generic reflecting case, we
note that the spatial sequence of domains encountered
at any given time as we move from x = −∞ to x = +∞
is invariant under the time evolution. Therefore, it is
valid to label the sequence of domains from the left by
an index l whereby the field Φ takes value Φl indepen-
dent of t for all x in the lth domain. In doing so, we
resolve the singularity associated with each collision by
stipulating that a zero length domain of the appropriate
field value continues to exist at the instant of the colli-
sion. Now, let space-time points (x, t) and (0, 0) lie in
the lth2 and lth1 domain respectively—such an assignment
is well-defined precisely because the sequence of domains
is time-invariant. The difference Φ(x, t) − Φ(0, 0) is thus
equal to Φl2 − Φl1 . To obtain the latter, it is extremely
useful to work at t = 0 and write

Φl2 − Φl1 =
2π

γ

s
∑

i=1

mi , (8)

where m1...s are the charges of the s = |l2 − l1| domain-
walls (solitons or antisolitions) encountered when going
from domain l2 to domain l1 at t = 0. The advantage
of this procedure is clear: The m1...|l2−11| are uncorre-
lated independently random variables that take values
±1 with equal probability, and as such, may be averaged
over independently of one another for fixed s.

The number s is of course a complicated function of
x, t and all the initial positions yµ and velocities vµ of
all the rays. However, since the t = 0 soliton charge
on a ray is not correlated with the yµ and vµ, we may
perform the average over these s soliton charges first for
a given realization of the yµ and vµ, and then average the
resulting expression over all the yµ and vµ. The result
of this charge averaging is

〈

eiηΦ(x,t)e−iηΦ(0,0)
〉

charge
=

AΘs.
Next, we note that s may be obtained by moving from

the spacetime point (0, 0) to point (x, t) along the straight
line joining the two, and keeping track of the numbers
kr and kl of rays that cross this straight line from the
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right and left respectively. After every such right inter-
section, we move one domain to the right, while every
left intersection results in moving back one domain to
the left—thus, s is precisely equal to |kr − kl|. Since
initial positions and velocities of the rays are indepen-
dent random variables, the probability of having kr right
intersections and kl left intersections may be calculated
straightforwardly by elementary means in terms of qr,
the probability that the straight line connecting point
(0, 0) to point (x, t) has a right intersection with a given
ray, and ql, the corresponding probability for left inter-
section. This, in conjunction with the result for charge
averaging above, then allows us to write the following
combinatorial expression

CΦ(x, t) = A lim
M→∞

∑

kr , kl

M !qkr

r qkl

l (1 − qr − ql)M−kr−kl

kr!kl!(M − kr − kl)!
Θ|kr−kl| , (9)

where the primed sum is over all kr and kl ranging from 0
to M with the constraint that kr +kl ≤ M , ql,r = q̃l,r/M ,
and we have assumed without loss of generality that x
and t are positive.

Before we proceed further, we note that the perfectly
transmitting case is considerably simpler: Since the tra-
jectories coincide with rays, and charges on rays are in-
variant in time and uncorrelated, Φ(x, t) − Φ(0, 0) can
be obtained by moving along the dotted line connecting
(0, 0) and (x, t) and counting the total number kr + kl of
rays intersecting this line (this is the number of uncor-
related random charges we cross in going from (0, 0) to
(x, t)) and multiplying by 2π/γ. The rest of the argument
above is unchanged and we obtain a simpler combinato-
rial expression with the |kr − kl| in the exponent of the
cosine in Eq. (9) replaced by kr + kl. Taking the ther-
modynamic limit using the trinomial formula gives the
result Eq. (4).

Returning to the reflecting case, further progress re-
lies crucially on a device suggested to us by D. Dhar.
The artifice involved consists of viewing the sum of a
subset of terms with fixed kr − kl = n as the coeffi-
cient of zn in the Laurent expansion of some function
of a complex variable z. For n ≥ 0, this is achieved by
identifying the corresponding partial sum with the co-
efficient of zn in the trinomial expansion of fM (Θz) ≡
(1 − qr − ql + Θzqr + ql/Θz)M . Similarly, for n < 0, the
identification is with the coefficient of zn in the trinomial
expansion of fM (z/Θ). The advantage of this approach
is now clear: Each Laurent coefficient can be written as
a contour integral around a contour enclosing the origin,
and the two sums over n for either sign of n are simply
geometric series which can be evaluated in closed form.
Moreover, the thermodynamic limit can be taken explic-
itly for both sums upon choosing in each case a contour
along which the geometric series converges. A convenient

rescaling of integration variables then gives:

CΦ(x, t) = A
e−(q̃r+q̃l)

2πi

(

∮

Ca

dw

w − Θ( q̃r

q̃l
)

1

2

e
√

q̃r q̃l(w+w−1)

+

∮

Cb

dw

w − 1
Θ ( q̃r

q̃l
)

1

2

e
√

q̃r q̃l(w+w−1)

)

. (10)

Here Ca is an anti-clockwise contour enclosing the origin
with |w| > |Θ|

√

q̃r/q̃l and Cb goes clockwise around the

origin with |w| <
√

q̃r/q̃l/|Θ|. We now expand the ex-
ponentials in a Laurent series and integrate each term
to finally arrive at Eq. (5) upon resumming the resulting
series.

The main issue raised by our results is that of the ori-
gin of the distinction between the semiclassical and form-
factor results. Both methods make subtle unproven as-
sumptions about orders of limits: the commuting of the
t → ∞ limit with either the semiclassical (in which the
low momentum limit is taken in obtaining Eq. (2)) or the
form factor expansions. It could be that such an assump-
tion is invalid in one of the methods, and only the other
result is generically valid in the long-time limit. However,
we suspect that the distinction reflects a fundamental
physical difference between generic and integrable sys-
tems, and the two results apply in their respective cases.

After this work was completed, we became aware of
independent work by Rapp and Zarand[11] who find that
diffusive behavior appears in the correlators of the one-
dimensional Q-state quantum potts model for Q > 2.
Remarkably, the correlation functions in the two cases
differ only in the choice of the parameter Θ which takes
the value Θ = −1/(Q− 1) in the Potts case.
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results of Ref 11. One of us (KD) would like to thank
A. Dighe and R. Raghunathan for useful discussions, and
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