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Thermal melting of density waves on the square lattice
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We present the theory of the effect of thermal fluctuations on commensurate p × p density wave
ordering on the square lattice (p ≥ 3, integer). For the case in which this order is lost by a second
order transition, we argue that the adjacent state is generically an incommensurate striped state,
with commensurate p-periodic long range order along one direction, and incommensurate quasi-long-
range order along the orthogonal direction. We also present the routes by which the fully disordered
high temperature state can be reached. For p = 4, and at special commensurate densities, the 4× 4
commensurate state can melt directly into the disordered state via a self-dual critical point with
non-universal exponents.

I. INTRODUCTION

A variety of remarkable recent low temperature scan-
ning tunneling microscopy (STM) observations have re-
vealed periodic modulations in the local density of states
of the cuprate superconductors1,2,3,4. Notably, the ob-
servations of Hanaguri et al

3 Ca2−xNaxCuO2Cl2 clearly
show that the modulations have a commensurate period
of 4 lattice spacings along both directions of the under-
lying square lattice (4× 4 ordering). Closely related, but
not identical, modulations have been observed in higher
temperature STM5, and in neutron scattering6,7,8,9 ob-
servations. The differences between the various exper-
iments relate (i) to the period of the ordering, which
is incommensurate in Ref. 5, and (ii) to whether the
ordering extends along one or both of the x and y
axes—neutron scattering experiments are more easily ex-
plained by anisotropic ordering along one of the axes
directions10,11,12. An important open question is whether
these differences reflect a fundamental distinction in the
underlying electronic structure of the cuprates, or they
can be explained by the differing experimental parame-
ters of temperature and carrier concentration.

This paper will begin with the assumption that at very
low T , for a small range of carrier densities, and in a suffi-
ciently clean sample, the system has perfect 4×4 density
wave order (and, more generally, p× p order with p ≥ 3,
integer). We will then present a general phenomenolog-
ical theory of the effect of thermal fluctuations on such
an ordered state, describing the phases that appear at
higher T and for a wide range of carrier concentration.
Because we focus exclusively on thermal fluctuations, our
results are quite general and independent of the precise
microscopic nature of the density wave ordering; in par-
ticular, the ordering could be a site charge density wave,
or a modulation in exchange or pairing energies due to
valence bond solid order. Our results depend only on the
fact that spin-singlet observables acquire a periodic mod-
ulation at low T , and follow completely from the symme-
try properties of such states. The thermal fluctuations
of such an ordered state can, and will, be described by a
purely classical theory of the density wave order param-
eters.

There is a actually large early literature on the melt-
ing of a variety to two-dimensional solids on different
substrates, and on the commensurate-incommensurate
transition13,14,15,16,17,18,19,20. However, most of this
work considered the case of the triangular solid on sub-
strates with six-fold symmetry, or the commensurate-
incommensurate transition on anisotropic solids. The
particular case of interest here, a square lattice substrate
and isotropic p × p ordering, appears not to have been
considered previously. We will therefore present an ex-
tension of this earlier theory to the situation appropriate
for the cuprate superconductors. As we will show below,
our results have a number of novel features not found in
the cases studied earlier.

We will begin in Section II by defining the order pa-
rameters of the commensurate p × p solid on the square
lattice. Symmetry considerations then allow us to ob-
tain a phenomenological free energy density controlling
thermal fluctuations of the order parameter, and a corre-
sponding mean field phase diagram shown in Fig. 1. At
this stage, this phase diagram contains 3 phases whose
characteristics we summarize below:
(A) Commensurate solid: This is the ground state
with long-range density wave order with period p along
both the x and y axes.
(B) Incommensurate, floating solid: In mean field
theory, this phase has density waves with the same in-
commensurate period along both the x and y directions.
This order is only quasi-long-range i.e. density wave cor-
relations decay with a power-law at long distances.
(C) Liquid: This is the high temperature phase in which
all density wave correlations decay exponentially with
distance.

The remainder of the paper will consider fluctuation
corrections to this mean field phase diagram.

In mean field theory, the transition between phases
A and B is first order, with a jump in the period
of the density wave from a commensurate to an in-
commensurate value. We know from previous work
on anisotropic phases15,17,18,19 that such commensurate-
incommensurate transitions are driven by the prolifera-
tion of domain walls, and we consider the domain wall
theory for such a transition in Section III. In our case
there are two sets of domain walls, running predomi-
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FIG. 1: Mean field phase diagram of the free energy FΦ in
Eq. (2.4). Although all parameters in FΦ are functions of
both temperature and carrier concentration, the vertical axis
above, s, is primarily a function of temperature. The hori-
zontal axis is tuned by η, which is mainly a measure of carrier
concentration away from the commensurate value appropriate
to the p × p ordered state. There are three stable mean field
phases separated by a first order transition (thick line), a sec-
ond order transition (solid line), and a second-order critical
point at s = η = 0. The phases A, B, C, are described in the
text. For phases A and B we show a schematic of the density
modulation δρ(r) for the special case p = 4, with the points
representing the underlying lattice. Upon including fluctu-
ations, the transition between phases A and B can become
second-order; in this situation the phase adjacent to phase A
is a new phase BS , the incommensurate striped phase. The
phase BS preempts a portion (or all) of phase B. See Fig 4
for the fluctuation-corrected phase diagram of phases A and
B.

nantly in the x and y directions, and a key parame-
ter will be the intersection energy, fI , of these domain
walls. If fI < 0, then the mean field prediction of a first
order transition to an isotropic floating solid is main-
tained. However, for the case of a positive intersection
energy (fI > 0), we will demonstrate that there is a
second order transition to an anisotropic, incommensu-
rate “striped” state, which we denote BS . The BS state
has commensurate long range order with a period of p
lattice along one axis, and incommensurate quasi-long-
range order along the orthogonal axis. Because BS has
long-range order only along one direction, it may also be
labelled a ‘smectic’21,22; however the presence of the un-
derlying lattice makes its fluctuations quite different from
a conventional smectic liquid crystal. The striped solid
BS will replace a portion of phase B, so that BS covers
at least the entire second-order phase boundary to phase
A (see Fig 4). The remainder of phase B could remain
an isotropic floating solid, or it could be anisotropic in
its entirety.

Section IV will consider the transitions from the in-
commensurate states in phase B to the disordered liquid
C. Two distinct scenarios are possible, depending upon

the whether the transition takes place from an isotropic
floating solid B, or from the anisotropic solid (BS) which
has incommensurate order along only one axis. In ei-
ther case, the transition is driven by the unbinding of
dislocations13,14, and the complete theory for such tran-
sitions will be presented.

Finally, Section V will present the theory of the direct
transition from the commensurate p × p solid A to the
liquid state C. From Fig. 1 it appears that such a tran-
sition is only possible at special commensurate values of
the density. For the physically relevant case of p = 4 we
will find that a direct second order transition is possible.
It is described by a self-dual theory with continuously
varying exponents, and is a generalization of the theory
found in Ref. 23 for the XY model.

II. ORDER PARAMETERS AND MEAN FIELD

THEORY

As noted in Section I, all phases and transitions ex-
amined here are associated with the order of a generic
‘density’, which could be any observable invariant under
spin rotations and time reversal. We represent this den-
sity by δρ(r). At sufficiently low temperatures, in weak
disorder, and for some range of carrier concentration, we
assume that this density prefers to order with a period
of p lattice spacings (p = 4 is the case of interest for the
cuprates). We can therefore write

δρ(r) = Re
[
ΦxeiKx·r

]
+ Re

[
Φye

iKy ·r
]
, (2.1)

where Kx = (2π/a)(1/p, 0), Ky = (2π/a)(0, 1/p), and
Φx,y are complex order parameters which vary slowly the
on the scale of a lattice spacing.

We now want to write down the most general free en-
ergy for Φx,y consistent with the symmetries of the un-
derlying lattice. Among these are Tx,y which translate
by a lattice spacing in the x, y directions, and Ix,y which
reflect the x, y axes. These operations lead to

Tx : Φx → Φxe2iπ/p ; Φy → Φy

Ty : Φx → Φx ; Φy → Φye2iπ/p

Ix : Φx → Φ∗

x ; Φy → Φy

Iy : Φx → Φx ; Φy → Φ∗

y. (2.2)

We will also assume the symmetry of rotations by 90
degrees, R, under which

R : Φx → Φy ; Φy → Φ∗

x. (2.3)

This symmetry is absent in some of the cuprate com-
pounds (most notably, in YBCO), and it is not difficult
to extend our considerations to include this case.

We can now write down the most general free energy
density, expanded in powers of Φx,y and its gradients,
consistent with the symmetries in Eqs. (2.2) and (2.3)
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(see also Refs. 24 and 25). This is

FΦ =

∫
d2r

[
C1

(
|∂xΦx|2 + |∂yΦy|2

)

+ C2

(
|∂yΦx|2 + |∂xΦy|2

)

+ iη
(
Φ∗

x∂xΦx + Φ∗

y∂yΦy

)

+ s
(
|Φx|2 + |Φy|2

)
+

u

2

(
|Φx|2 + |Φy|2

)2

+ v|Φx|2|Φy|2 + wΦp
x + c.c. + wΦp

y + c.c.

]
. (2.4)

Here s is a parameter which we will tune to drive the
transition; it is assumed to contain the primary depen-
dence on temperature, and will also have some depen-
dence on carrier density.

The term proportional to η is allowed by the symme-
tries. It indicates that at sufficiently high temperature,
the density correlations are generically incommensurate.
This incommensurability is a consequence of the values
of the domain wall energies between the p commensu-
rate ordered states16,20: a domain wall between state 1
and state 2 (say) will generally have a different energy
than a domain wall between state 1 and state p. In other
words, if we represent the p states along one direction by
a p state clock model, then the interactions of the clock
model are ‘chiral’.16

The sign of the parameter v implies a preference for
either isotropic order (v < 0 prefers both 〈Φx〉 and 〈Φy〉
non-zero), or anisotropic order (v > 0 prefers only one of
〈Φx〉 or Φy non-zero). We will assume throughout this
paper that v < 0, so that 〈Φx〉 and 〈Φy〉 are both non-zero
at sufficiently low temperatures. Nevertheless, we will
find that thermal fluctuations can induce an anisotropic
striped state over an intermediate temperature range.

The complex parameter w accounts for the commensu-
rability lock-in energy. It ensures that at sufficiently low
temperatures (specifically, for s sufficiently negative), the
order has a commensurate period of p lattice spacings.
For v < 0 (assumed throughout), the ordering will be
p× p. The phase of w controls the phase of this ordering
(‘site-centered’ or ‘bond-centered’). None of our results
will be sensitive to this phase, and will apply equally to
all of them.

A. Mean field theory

Now we present the results of a simple mean field min-
imization of FΦ, leading to the phase diagram in Fig. 1.
As described in the introduction we find three distinct
phases. The low temperature ground state, labelled by
A has long rage density wave order with period p char-
acterized by

Φx = Φy ∝ eiθ(p) (2.5)

where θ(p) = (2n + 1)π/p if the phase is bond-centered
and θ(p) = 2nπ/p if the phase is site-centered with n =
0, 1, . . . , p − 1. The inset in Fig. 1 A shows the locked in
solid for the special case of a bond-centered phase with
p = 4 where the positions of the underlying atoms are
indicated by the light gray circles. This commensurate
phase has a first order transition described by the line

s = −
( √

2u + v − pw√
2u + v −√

2u + v − pw

)
η2

4C1
(2.6)

to B which has incommensurate or floating density wave
order characterized by

Φx ∝ ei(η/2C1)x ; Φy ∝ ei(η/2C1)y. (2.7)

The magnitude of both Φx and Φy are equal and they
have the same incommensurate period along perpendic-
ular directions. For the special case of p = 4 the floating
state is shown as an inset in Fig. 1 B. The floating solid
can melt via a second order phase transition defined by
the line

s =
η2

4C1
(2.8)

to a fully disordered state C with Φx = Φy = 0. Finally,
there is a tri-critical point for s = η = 0 where the com-
mensurate solid A can melt directly to the liquid phase
C.

III. DOMAIN WALL THEORY OF THE

COMMENSURATE-INCOMMENSURATE

TRANSITION

In Section II A we found a mean-field first order tran-
sition between the commensurate p × p solid A and the
incommensurate, isotropic floating solid B. This section
will examine fluctuations near this transition more care-
fully. We will find that the transition can actually be
second order under suitable conditions, and the second-
order order transition is to an anisotropic, striped state
with commensurate p period order along one direction,
and incommensurate order along the orthogonal direc-
tion.

For our study of the initial melting of the commensu-
rate ordered state, we will assume that dislocations can
be ignored. The effect of dislocations will be considered
in Section IV, and we will then verify the self-consistency
of this assumption. Instead, the primary actors will be
domain walls between the commensurate states, as is
also the case in previous theories15 of the commensurate-
incommensurate transition in anisotropic systems.

In the absence of dislocations, we can focus on globally
defined single-valued angular variables θx,y with

Φx ∝ eiθx ; Φy ∝ eiθy . (3.1)

Note that the values of θx,y span over all real numbers,
and not just modulo 2π. However, periodic boundary
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conditions need only be satisfied modulo 2π. In the näive
continuum limit, the free energy for θx,y can be expanded
in powers of the local “strains” ∇rθx,y:

Fθ =

∫
d2r

[
K1

2

[
(∂xθx)2 + (∂yθy)2

]

+
K2

2

[
(∂xθy)

2 + (∂yθx)2
]
+ K3(∂xθy)(∂yθx)

+ K4(∂xθx)(∂yθy) − η [∂xθx + ∂yθy]

− h [cos(pθx) + cos(pθy)] − . . .

]
. (3.2)

All terms above are, in principle, obtained from those in
Eq. (2.4), but now we have retained terms up to second
order in spatial gradients. Now, the incommensuration
is induced by the total derivative terms proportional to
η: these are non-zero because the angular fields can ac-
cumulate an integer multiple of 2π even under periodic
boundary conditions. Similarly, we do not have the free-
dom to integrate by parts, and so combine the terms pro-
portional to K3 and K4. The commensurability energy
is now imposed by the p-fold field hp.

We will begin in Section III A by describing the mean-
field structure of the domain wall (or ‘soliton’) excitations
of Fθ. Then, in Section III B we will present the theory
of the commensurate-incommensurate transition driven
by the proliferation of these domain walls.

A. Energetics of domain walls

Consider starting at low temperatures from a fully or-
dered two-dimensional crystal. In this state θx = 2πn/p,
θy = 2πn′/p, where n, n′ are integers, at all points in
space. We are now interested in the deviations from this
perfectly ordered state as measured by the continuum
free energy Fθ in Eq. (3.2).

The simplest deviation is a single line domain wall in
which θx increases by 2π/p across the domain wall. For
η > 0 (which we assume, without loss of generality), such
a domain wall will preferentially run in the y direction
i.e. the domain wall has θy constant, and θx a function
of x only. The x dependence of θx can be determined by
the sine-Gordon saddle point equation

K1∂
2
xθx(x) = ph sin [pθx(x)] (3.3)

subject to the boundary conditions

θx(0) = 0 ; θx(Lx) =
2π

p
(3.4)

where Lx is the size of the system in the x-direction. The
solution is a soliton with equation

θx(x) =
4

p
tan−1

[
ep
√

h/K1(x−Lx/2)
]

(3.5)

which allows us to determine the value of the domain wall
free energy per unit length (excluding the contribution of
the η term in FI), which we represent by ǫ,

ǫ =
8

p

√
K1h. (3.6)

Similarly, there is a corresponding domain wall in θy,
with identical physical properties.

Now we consider the interesting case with domain walls
running in both the x and y directions. These walls will
intersect, and we are interested in the nature of the in-
tersection, and of the intersection free energy fI . We can
focus in on a single domain wall crossing by imposing the
boundary conditions of Eq. (3.4) in both the x and y di-
rections. For the special case of perfectly straight domain
walls, θx(x, y) = θx(x) and θy(x, y) = θy(y), the only in-
teraction term in Eq. (3.2) can be integrated exactly to
give

fI =

(
2π

p

)2

K4 (3.7)

indicating that the sign of the domain wall intersection
energy is equal to the sign of K4. When the domain walls
are not straight, the interaction energy can be found by
numerically minimizing Fθ and evaluating the interaction
terms at the ground state field configurations as seen in
Fig. 2. For the following discussion we refer to Fig. 2 and
it is assumed that all stiffnesses are measured in units of
K1. For positive values of K4 and K2 = 1.0 (panels a
through c) we observe straight domain walls for K3 < K2

and only observe deviation when K3 ≃ K2. In panel d,
K3 ≃ K2 < K4 and we find that the walls wander quite
significantly. Panels a through d all have K4 > 0 and in
agreement with our earlier discussion, fI > 0 in all four
configurations. Panel e has no interaction terms (K3 =
K4 = 0) and consequently fI = 0. For negative values
of K4 we find that the domain wall intersection energy
changes to a negative value. For |K3| < K2 the walls
remain straight (panels f and g) but as K3 ≃ K4 ≃ −K2

the intersection energy becomes large and negative and
the system attempts to extend the domain wall overlap
over a finite region (panel h).

Although we have only presented eight distinct config-
urations here, all of the Kj parameter space was exam-
ined. When the magnitude of K3 and K4 are small with
respect to K2 and K1 we always find configurations with
domain walls crossing at right angles where the domain
wall intersection energy can be calculated using Eq. (3.7).

B. Proliferation of domain walls

Now we imagine increasing the parameter η so that
the total free energy per unit length of a domain wall is
eventually negative. In such a situation we expect a pro-
liferation of domain walls, leading to the appearance of a
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FIG. 2: Eight possible configurations of the free energy den-
sity for domain wall crossings depending on the numerical
values of K2, K3 and K4 with p = 4. The grey scale plots
the size of the local free energy density and all stiffnesses and
energies are in units of K1. Panels a. through h. show de-
creasing domain wall intersection energy fI , and for straight
walls, the numerically computed value can be compared with
(π2/4)K4.

floating solid with incommensurate density correlations.
This section will discuss the theory of such a transition.

Let the incommensurate state have domain walls in θx

with an average spacing ℓx, and domain walls in θy with
an average spacing θy. From the energy per unit length
of these domain walls, and their intersection energy, com-
puted in Section III A, there is a clearly a contribution
to the free energy per unit area, Fd, given by (see Fig. 2)

F (1)
d (ℓx, ℓy) =

(
ǫ − 2πη

p

) (
1

ℓx
+

1

ℓy

)
+

fI

ℓxℓy
. (3.8)

However, in addition to the simple energetic contri-
butions in Eq. (3.8), we also have to consider the en-
tropic contribution of the wandering of the domain walls
(Fig. 3). This can be computed using the elegant free

2

2

0

FIG. 3: A net of wandering domain walls constructed using
random walkers on a lattice with both hard-core repulsion
and restricted phase space. If the domain walls are separated
on average by a distance ℓx in the x direction and ℓy in the
y direction, then we observe collisions between domain walls
running in the same direction with separation on the order of
ℓ2x or ℓ2y (ℓx = ℓy here).

fermion mapping of Pokrovsky and Talapov15, which ap-
plies here (essentially unchanged) separately to the do-
main walls in each direction. Briefly, the argument runs
as follows. Let ux(y) represent the x co-ordinate of a do-
main wall in θx. Any y dependence in ux increases the
total length of the domain wall, and so leads to a free
energy cost

Fw =
1

2
ǫ

∫
dy

(
dux

dy

)2

. (3.9)

Now the partition function at a temperature T of such
domain walls can be mapped onto that for free fermions
with a density 1/ℓx and mass ǫ/T . From the ground state
energy of such a free fermion system, we then obtain the
contribution of the wandering of the domain walls to the
free energy density

F (2)
d (ℓx, ℓy) =

π2T 2

6ǫ

(
1

ℓ3
x

+
1

ℓ3
y

)
. (3.10)

We are now faced with the simple problem of minimiz-
ing the free energy density

Fd(ℓx, ℓy) = F (1)
d (ℓx, ℓy) + F (2)

d (ℓx, ℓy) (3.11)

as a function of ℓx and ℓy to determine the nature of the
commensurate-incommensurate transition. This simple
calculation turns out to have some interesting structure
which we will now describe. The results of such a min-
imization are summarized in Fig 4. The nature of the
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FIG. 4: Phase diagram of the commensurate-incommensurate
transition obtained by the minimization of Eq. (3.11) over the
values of the mean domain wall spacing ℓx and ℓy .

phases appearing here depends upon the sign of the do-
main wall intersection energy fI .

For negative fI corresponding to K4 < 0 in Fθ, as
we increase the value of η the mean field prediction is
preserved, and the ground state with long range charge
density wave order melts via a first order transition to an
isotropic incommensurate floating solid which we labelled
as B. This transition occurs when

ηAB =
pǫ

2π

[
1 − 3

8

(
fI

πT

)2
]

. (3.12)

That is, for η < ηAB the system is commensurate with
1/ℓx = 1/ℓy = 0 but for η > ηAB there is a jump to the
isotropic floating state B with domain wall densities

1

ℓx
=

1

ℓy
= − fIǫ

π2T 2
+

√(
fIǫ

π2T 2

)2

− 2ǫ(ǫ − 2πη/p)

π2T 2
.

(3.13)
If the domain wall intersection energy is positive, im-

plying that collisions are disfavored (fI > 0, K4 > 0),
then as we increase the value of η from zero the state
remains commensurate with long range order and no do-
main walls (1/ℓx = 1/ℓy = 0) until

ηABS
=

pǫ

2π
(3.14)

where there is a second order phase transition to a state
with (say)

1

ℓy
= 0 ;

1

ℓx
=

1

πT

√

2ǫ

(
2πη

p
− ǫ

)
(3.15)

which has domain walls running in either the x or y di-
rection but not both. This anisotropic floating solid or
incommensurate striped state which we label BS has long

range charge density wave order with period p in one di-
rection and quasi long range order with power law decay
in the perpendicular direction. Near the second-order
transition between A and BS , insertion of Eq. (3.15) into
Eq. (3.11) shows that Fd ∼ −(ǫ − 2πη/p)3/2.

As η is increased further for fI > 0, the phase BS

persists until

ηBSB =
pǫ

2π

[
1 + (1.70968 . . .)

(
fI

πT

)2
]

(3.16)

where there is a first order transition to the isotropic
incommensurate floating solid B with ℓx and ℓy still given
by Eq. (3.13). In fact, the solution in Eq. (3.13) is a local
minimum of the free energy for all η > pǫ/(2π). However,
its free energy behaves like Fd ∼ −(ǫ − 2πη/p)2 upon
approaching phase A. Close enough to phase A, this free
energy is always larger than the free energy for phase BS .

Therefore, if the intersection energy for domain walls
is positive, the melting of the commensurate solid A al-
ways occurs via a second-order transition to the striped
anisotropic state BS .

IV. DISLOCATION MEDIATED MELTING OF

FLOATING SOLIDS

We will now consider the transition from the isotropic
floating solid B and the striped floating solid BS to the
disordered liquid phase C. These transitions are driven
by the unbinding of dislocations.

A first step in understanding the statistical mechan-
ics of dislocations is the knowledge of the effective action
for the smooth “spin-wave” fluctuations in θx,y. This
will be done in Section IV A, where we will also esti-
mate the elastic constants using the domain wall theory
of Section III B. With the parameters of the “spin-wave”
theory at hand, we can address the energetics of the the
dislocations. We will derive the effective action for the
dislocations in Section IVB and then obtain the renor-
malization group (RG) flow equations in Section IV C.

A. Elastic constants

The “spin-wave” theory of fluctuations about the float-
ing state proceeds as in Section III. However, rather than
defining the spin-wave variables about the commensurate
state as in Eq. (3.1), we now need to look at fluctuations
above an incommensurate ordered state. So now we write

Φx ∝ ei2πx/(pℓx)eiθx ; Φy ∝ ei2πy/(pℓy)eiθy , (4.1)

because the incommensurate ordering wavevectors are
(2π/a)(1/p + a/ℓx, 0) and (2π/a)(0, 1/p + a/ℓy). We are
interested in the effective action for these θx,y on a coarse-
grained scale much larger than ℓx,y.
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This action can be deduced by the same symmetry
arguments made in Section II. It is not difficult to see
that this action in the floating phase B has the same
structure as Fθ in Eq. (3.2), except that now η = h = 0:

FB =

∫
d2r

[
K1

2

[
(∂xθx)2 + (∂yθy)

2
]

+
K2

2

[
(∂xθy)2 + (∂yθx)2

]
+ K3(∂xθy)(∂yθx)

+ K4(∂xθx)(∂yθy)

]
(4.2)

For the phase BS , the θy variables (say) are locked at
their commensurate value, and so only the θx variables
will contribute to the spin-wave theory:

FBS
=

∫
d2r

[
K1

2
(∂xθx)2 +

K2

2
(∂yθx)2

]
(4.3)

An important point is that the stiffnesses K1−4 in
Eqs. (4.2) and (4.3) be strongly renormalized from the
bare values in Eq. (3.2). Following the analysis of Ref. 17,
we will now estimate their renormalized values KR

1−4 in
terms of the parameters appearing in the domain wall
free energies in Section III B (the superscript R will be
used for clarity only in this subsection).

First, imagine that we impose a uniform compressional
strain ∂xθx on the floating solid. On the average, this will
cause the domain walls to move closer to each other, and
change the value of ℓx to ℓx−δℓx. Because θx changes by
2π/p across each domain wall, we conclude that ∂xθx =
(2π/p)δℓx/ℓ2

x. The change in ℓx will cause a change in
free energy that can be computed from Eq. (3.11), and
so we conclude

KR
1 =

p2ℓ4
x

4π2

∂2Fd

∂ℓ2
x

, (4.4)

where the derivative has to be computed at the equilib-
rium values of ℓx, ℓy which minimize Eq. (3.11). This
determines

KR
1 =

p2T 2

4ǫℓx
, (4.5)

in both phases B and BS . Similarly, we can apply a
combined compressional strain in θx and θy and conclude

KR
4 =

p2ℓ2
xℓ2

y

4π2

∂2Fd

∂ℓx∂ℓy
, (4.6)

This is non-zero only in the floating phase B, and we
obtain

KR
4 =

p2fI

4π2
, phase B only. (4.7)

To determine KR
2 , apply a small uniform shear strain

to θx by inducing a non-zero ∂yθx. This will move the

domain walls in θx such that the position of each domain
wall obeys ∂yux = (pℓx/(2π))∂yθx. Inserting this into
Eq. (3.9), we obtain

KR
2 =

ǫ

ℓx

(
pℓx

2π

)2

=
ǫp2ℓx

4π2
, (4.8)

in both phases B and BS .

Finally, to determine KR
3 we need to apply shear

strains to both θx and θy. Neither of them causes a net
change in the density of domain walls, or in the number
of intersections between the domain walls. Consequently
there is no change to the free energy beyond that already
accounted for by KR

2 , and hence

KR
3 = 0, (4.9)

in both phases B and BS .

B. Dislocation interactions

For the most part, this section will be restricted to a
discussion of dislocations in phase B. The simpler case
of the anisotropic phase BS is easily obtained by only
including those terms arising from the fluctuations of θx.

Dislocations are simply ‘vortices’ in the angular fields
θx,y under which

∮
dr · ∇rθx = 2πmx(rv)

∮
dr · ∇rθy = 2πmy(rv) (4.10)

where mx,y are integers at the vortex (i.e. dislocation)
site rv, and the integral is over a contour that encloses rv.
Each dislocation is therefore characterized by a doublet
of integers (mx, my).

To compute the interactions between these vortices, it
is useful to define continuum vortex densities by

mi(r) =
∑

v

m(rv)δ(r − rv) (4.11)

where i = x, y. Then, after transforming to momentum
(k) space, the relation Eq. (4.10) can be written simply
as

kiθj = kiϑj +
2π

k2
ǫiℓkℓmj (4.12)

where ǫ is the antisymmetric tensor, and ϑj is an arbi-
trary smooth angular field which has no vortices. We now
insert Eq. (4.12) into the free energy FB in Eq. (4.2), and
minimize with respect to ϑj . The result for the total free
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energy of the vortices is then

Fv =

∫
d2k

4π2

2π2

D(kx, ky)

[
|mx(k)|2

(
k2

xK1(K
2
2 − K2

3 )

+ k2
yK2(K

2
1 − K2

4)
)

+ |my(k)|2
(
k2

yK1(K
2
2 − K2

3 )

+ k2
xK2(K

2
1 − K2

4)
)

+ mx(k)my(−k)kxky

(
K2

1K3

+ K2
2K4 − K3K4(K3 + K4)

)
]

(4.13)

where

D(kx, ky) ≡ K1K2(k
2
x + k2

y)2

+ k2
xk2

y

(
(K1 − K2)

2 − (K3 + K4)
2
)
.(4.14)

Note that the values of KR
1−4 from Section IVA are to be

inserted into the expressions above; here, and henceforth,
the superscript R has been dropped. The interaction
between the vortices in now determined by transforming
Eq. (4.13) back to real space. This takes the form

Fv = Ec

∑

v

[
m2

x(rv) + m2
y(rv)

]

+
∑

v<v′

[
mx(rv)mx(rv′)V (|rv − rv′ |, φ(rv − rv′))

+ my(rv)my(rv′ )V (|rv − rv′ |, φ(rv − rv′) + π/2)

+ mx(rv)my(rv′ )W (|rv − rv′ |, φ(rv − rv′))

]
(4.15)

where φ(r) = arctan(y/x) is the angle the vector r makes
with the x axis. We will not need the explicit form of the
interaction W in our subsequent analysis, and so we will
not specify it explicitly; the interaction V is given by

V (r, φ) =

∫ ∞

0

e−kadk

k

∫ 2π

0

dϕ
[
eikr cos(φ−ϕ) − 1

]

× K1(K
2
2 − K2

3 ) cos2 ϕ + K2(K
2
1 − K2

4 ) sin2 ϕ

K1K2 + ((K1 − K2)2 − (K3 + K4)2) sin2 ϕ cos2 ϕ

=
p2T 2

4π2

∫ 2π

0

dϕ

∫ ∞

0

e−kadk

k
[cos(kr cos(φ − ϕ)) − 1]

× Λ(K̃i, ϕ)

≡ −p2T 2

2π
L̃0 ln(r/a) + Ṽ (φ) (4.16)

where we have inserted a soft cutoff using the lattice spac-
ing a, and

Λ(K̃i, ϕ) (4.17)

=
K̃2 cos2 ϕ + K̃1 sin2 ϕ

K̃1K̃2 +
(
(K̃1 − K̃2)2 − (K̃3 + K̃4)2

)
sin2 ϕ cos2 ϕ

is a function of the new couplings K̃1−4 defined by

K̃1 =
p2T 2

4π2

K2

K2
2 − K2

3

; K̃2 =
p2T 2

4π2

K1

K2
1 − K2

4

K̃3 =
p2T 2

4π2

K4

K2
1 − K2

4

; K̃4 =
p2T 2

4π2

K3

K2
2 − K2

3

.

(4.18)

At this point these definitions of the K̃1−4 may be viewed
as arbitrary variables, but we will see later in Section V
and Appendix B that these are the couplings that ap-
pear in a self-dual mapping of the theory Fθ. Also, from

Appendix B, note that the K̃1−4 couplings appear upon
taking the inverse of the matrix of couplings between the
strains in FB; consequently, the inverse expressions for

the K1−4 in terms of the K̃1−4 have exactly the same
structure as in Eq. (4.18). The parameters in the last
line of Eq. (4.16) are given by

L̃0 =

∫ 2π

0

dϕ

2π
Λ(K̃i, ϕ) (4.19)

=
K̃1 + K̃2√

K̃1K̃2

[
(K̃1 + K̃2)2 − (K̃3 + K̃4)2

]

Ṽ (φ) = −p2T 2

4π2

∫ 2π

0

dϕ ln (| cos(φ − ϕ)|) Λ(K̃i, ϕ)

where the calculation of L̃0 is described in Appendix A.

For K̃3 = K̃4 = 0, Ṽ (φ) can be evaluated in closed form:

Ṽ (φ) =
p2T 2

4π(K̃1K̃2)1/2
ln




(
K̃

1/2
1 + K̃

1/2
2

)2

K̃1 sin2 φ + K̃2 cos2 φ


 .

(4.20)

C. Renormalization group flows

With the knowledge of the interactions between the
dislocations, the renormalization group equations can be
derived by the methods already described in Refs. 13
and 14. We introduce a vortex fugacity, y = e−Ec/T and
examine the effect of integrating out pairs of dislocations
in an expansion in powers of y. A simple and standard
analysis shows that the flow equation for the fugacity is

dy

dℓ
=

(
2 − p2T

4π
L̃0

)
y. (4.21)

The renormalization of the Ki from the vortices can
be computed by the method described in Appendix B
of Ref. 14. We compute the renormalization of the elas-
tic constants, Ki by determining the contribution of the
vortices to a two-point correlation of the strains. Such
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a procedure leads naturally to flow equations for the ‘in-

verse’ or ‘dual’ K̃i couplings, and we obtain

dK̃1

dℓ
= p2y2T

∫ 2π

0

dφ cos2 φeṼ (φ)/T

dK̃2

dℓ
= p2y2T

∫ 2π

0

dφ sin2 φeṼ (φ)/T

dK̃3

dℓ
= 0

dK̃4

dℓ
= 0 (4.22)

We can convert these into equations for the Ki and obtain

dK1

dℓ
= −4π2y2

T
(K2

1 + K2
4 )

∫ 2π

0

dφ sin2 φeṼ (φ)/T

dK2

dℓ
= −4π2y2

T
(K2

2 + K2
3 )

∫ 2π

0

dφ cos2 φeṼ (φ)/T

dK3

dℓ
= −8π2y2

T
K2K3

∫ 2π

0

dφ cos2 φeṼ (φ)/T

dK4

dℓ
= −8π2y2

T
K1K4

∫ 2π

0

dφ sin2 φeṼ (φ)/T (4.23)

While complex in appearance, the flow equations
Eq. (4.21) and (4.23) predict a melting transition of the
floating phase B into the liquid phase C which is in a
universality class closely related to that of the Kosterlitz-
Thouless (KT) transition. The phase B is stable provided

L̃0 > 8π/(p2T ). Evaluating L̃0 at the values of the KR
i

determined in Section IVA, we find that phase B is sta-
ble everywhere for p = 4 towards an infinitesimal vortex
fugacity for the elastic constants in the domain wall the-
ory; this justifies the neglect of dislocations in our study
of domain wall proliferation in Section III. The present
equations Eq. (4.23) show how phase B will ultimately
become unstable to a vortex unbinding transition once
the vortex fugacity becomes larger. The flow equations
in Eq. (4.23) imply singularities in the elastic constants
just before the melting transition which can be computed
as in Ref. 26. Some of the universal amplitude ratios here
will be different from the KT transition, but all exponents
and critical singularities will be as in the KT transition.

The flow equations for the melting of the anisotropic
phase BS can be easily obtained from Eq. (4.23) simply
by setting K3 = K4 = 0. In this case, the values of the
elastic constants in Section IVA and Eq. (4.19) imply
that

L̃0 =
4π2

p2T 2

(
KR

1 KR
2

)1/2
=

π

T
. (4.24)

The equation for the vortex fugacity Eq. (4.21) implies
then that the vortex fugacity flows to zero as long as17

p2 > 8, which is certainly the case for p > 3. Hence the
floating phase BS is also initially stable to dislocation
unbinding. At higher temperatures, there can be a dis-
location unbinding transition in the Kosterlitz-Thouless

universality class. Note that in this sequence of transi-
tions, even after such a transition has occurred from the
phase BS , order has only been lost in x direction, and
commensurate long-range order remains in θy. So the
system is still strongly “striped” and anisotropic. Full
isotropy will be restored only after a second set of simi-
lar transitions in θy, the first to floating incommensurate
order in θy, and then a dislocation unbinding transition
to the liquid phase C.

V. DIRECT MELTING OF THE

COMMENSURATE SOLID

As we noted in Section I and Fig 1, it is possible that
the low temperature 4 × 4 commensurate solid can melt
directly into the high temperature liquid state. In the
theories FΦ in Eq. (2.4) and Fθ in Eq. (3.2), such a transi-
tion appears possible at commensurate densities at which
η = η = 0. So this section will neglect the influence of
η and perform a full renormalization group analysis of
the theory Fθ, including both dislocations and the p-fold
lock-in field h.

A key property which aids the analysis is a self-duality
of the action in which the dislocation fugacity, y, and
the lock-in field h are interchanged. The origin of this
self-duality is similar to that discussed in Ref. 23, and
we present a brief derivation in Appendix B. From this
analysis we obtain the the partition function Fθ, includ-
ing dislocations, obeys

Zθ(K1, K2, K3, K4, h, y) = Zθ(K̃1, K̃2, K̃3, K̃4, y, h),
(5.1)

where the couplings K̃i were defined in Eq. (4.18).

Aided by this duality, we can now immediately deduce
the full flow equations for all the elastic constants Ki,
the vortex fugacity y and the field h from the results in
Section IVC. As always, these equations are valid for
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small y and h and are

dh

dℓ
= (2 − p2T

4π
L0)h

dy

dℓ
= (2 − p2T

4π
L̃0)y

dK1

dℓ
=

∫ 2π

0

dφ

[
p2h2T cos2 φeV (φ)/T

− 4π2y2

T
(K2

1 + K2
4 ) sin2 φeṼ (φ)/T

]

dK2

dℓ
=

∫ 2π

0

dφ

[
p2h2T sin2 φeV (φ)/T

− 4π2y2

T
(K2

2 + K2
3 ) cos2 φeṼ (φ)/T

]

dK3

dℓ
= −8π2y2

T
K2K3

∫ 2π

0

dφ cos2 φeṼ (φ)/T

dK4

dℓ
= −8π2y2

T
K1K4

∫ 2π

0

dφ sin2 φeṼ (φ)/T (5.2)

Here L0 and V (φ) are defined as in Eq. (4.19), but with
direct couplings:

L0 =

∫ 2π

0

dφ

2π
Λ(Ki, φ) (5.3)

V (φ) = −p2T 2

4π2

∫ 2π

0

dϕ ln (| cos(φ − ϕ)|) Λ(Ki, ϕ)

We will confine our analysis of Eq. (5.2) to the phys-
ically important case of p = 4. For this case, we first
searched for an intermediate phase with power-law cor-
relations: such a phase would obtain if there was a set of
values of K1−4 for which both y and h flowed to zero. As
shown in Appendix A, there is no such regime of param-
eters.

However, the flow equations in Eq. (5.2) do predict
a direct second-order transition between the 4 × 4 com-
mensurate solid A and isotropic liquid C. This transi-
tion is described by a manifold of fixed points. In the
6-dimensional space of couplings, there is 2-dimensional
manifold of fixed points specified by

y = h ;
K1K2

T 2
=

4

π2
; K3 = K4 = 0. (5.4)

In order to describe the flows near this manifold, it is
convenient to make a change of variables from y, h, K1,
and K2 to

α = y − h , β = y + h

K =

√
K1K2

T
− 2

π
, λ =

√
K1

K2
. (5.5)

In these variables, the fixed point manifold is described
by α = K = K3 = K4 = 0, while the values of λ and

β are arbitrary. All physical properties, including the
exponents at the second-order critical point, will depend
upon the bare values of λ and β. We expanded Eqs. (5.2)
to linear order in α, K, K3, and K4, and after diago-
nalization of the flow equations, obtained the following
renormalization group eigenvalues in this 4-dimensional
subspace:

2π2β
(√

λ + 1/
√

λ
)4

×


1 ±


1 +

4

π2β
(√

λ + 1/
√

λ
)4




1/2

 ,

− 4π2β2
(√

λ + 1/
√

λ
)4

, (5.6)

where the last eigenvalue is doubly degenerate. It is ev-
ident that for all λ, β there are 3 negative eigenvalues
and 1 positive eigenvalue. This flow therefore describes
a conventional second-order transition, with the correla-
tion length exponent ν equal to the inverse of the positive
eigenvalue.

VI. CONCLUSIONS

We have shown that thermal fluctuations on 4 × 4 or-
dered state lead generically to a rather rich phase dia-
gram as a function of temperature and carrier concentra-
tion. This phase diagram generically must have regions
with incommensurate and anisotropic ordering. Thus it
is remains within the realm of possibility that the under-
lying physics of density wave ordering in all the cuprates
is the same, and the distinctions between the experiments
are entirely due to their distinct locations in our phase
diagram.

For easy reference, we conclude by listing the various
routes the 4×4 solid A can melt into the liquid C. The list
below is not exhaustive, and omits certain possibilities
involving strong first order transitions between unrelated
phases.

1. Phase A undergoes a second order Pokrovsky-
Talapov15 (PT) transition to the incommensurate
striped phase BS , as described in Section III B.
This is followed by a first order transition into phase
B as also described in Section III B and Fig 4. Then
phase B undergoes a dislocation mediated melt-
ing transition into phase C which is described by
Eqs. (4.21) and (4.23). This last transition is in a
universality class which is nearly, but not exactly,
KT.

2. PT transition from phase A to phase BS as in 1.
Phase BS then has a KT transition to a striped
state which has long range order with period 4
along one direction, and exponentially decaying
correlations along the other. This striped set melts
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into C after a second set of similar transitions: a PT
transition into a state with incommensurate quasi-
long range order in one direction only, and then
finally a KT transition in C.

3. First order transition from A to B as described in
Section III B and Fig 4. Then, a transition from B
to C as in 2.

4. At special commensurate densities, there is a di-
rect, self-dual, second-order transition from A to
C, described in Section V, with continuously vary-
ing exponents.
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APPENDIX A: EVALUATION OF L̃0

This appendix will present the derivation of L̃0 in
Eq. (4.19) and its application to the flow equations pre-
sented in Section V. We begin by writing the integral
explicitly as

L̃0 =

∫ 2π

0

dϕ

2π
(A1)

× K̃2 cos2 ϕ + K̃1 sin2 ϕ

K̃1K̃2 +
[
(K̃1 − K̃2)2 − (K̃3 + K̃4)2

]
sin2 ϕ cos2 ϕ

=

∫ 2π

0

dϕ

π

[
K̃1 + K̃2

α+ − α− cos2 2ϕ
+

(K̃2 − K̃1) cos 2ϕ

α+ − α− cos2 2ϕ

]

where

α± = (K̃1 ± K̃2)
2 − (K̃3 + K̃4)

2. (A2)

The second term in the last line of Eq. (A1) is identically
zero and we are left with

L̃0 = (K̃1 + K̃2)

∫ 2π

0

dϕ

π

1

α+ − α− cos2 2φ

= 2
K̃1 + K̃2√

α+(α+ − α−)

=
K̃1 + K̃2√

K̃1K̃2

[
(K̃1 + K̃2)2 − (K̃3 + K̃4)2

] , (A3)

which can be written in terms of our original coupling
constants Ki as

L̃0 =
4π2

p2T 2

K1(K
2
2 − K2

3 ) + K2(K
2
1 − K2

4)√
K1K2 [(K1 + K2)2 − (K3 + K4)2)]

. (A4)

This is not to be confused with L0 from Eq. (5.2) which
is given by

L0 =
K1 + K2√

K1K2 [(K1 + K2)2 − (K3 + K4)2]
. (A5)

For the direct transition from A to C (Section V) for
p = 4 we wish to determine if there is any region close
to the manifold of fixed points where both h and y are
irrelevant. We do this by expanding Eqs. (A4) and (A5)
for small K3 and K4 parameterized by

K3 = δ3K2 ; K4 = δ4K1, (A6)

where |δ3| and |δ4| < 1 and substituting into the expres-
sions for dh/dℓ and dy/dℓ in Eq. (5.2). Define

β(h) =
1

h

dh

dℓ
; β(y) =

1

y

dy

dℓ
, (A7)

it is then straightforward to show that β(h) ≷ 0 if

K1 ≷ K∗

1

[
1 +

(
π2K2

2δ3 + 4δ4T
2

π2K2
2 + 4T 2

)2
]

+ O
(
δ3
i

)
(A8)

and β(y) ≶ 0 if

K1 ≷ K∗

1

[
1 +

(
π2K2

2δ3 + 4δ4T
2

π2K2
2 + 4T 2

)2

+2

(
2πK2T (δ4 − δ3)

π2K2
2 + 4T 2

)2
]

+ O
(
δ3
i

)
(A9)

where K∗
1 = 4T 2/(π2K2). The relative signs of β(h) and

β(y) are shown in Fig. 5 and from Eqs. (A8) and (A9) we
have calculated that the two lines describing the zeros of
β(h) and β(y) are always separated by

32T 4K2(δ4 − δ3)
2

(π2K2
2 + 4T 2)2

> 0 (A10)

and thus there are no values of K1 and K2 for small K3

and K4 where the 4-fold anisotropy and vortices are both

irrelevant.

APPENDIX B: DUALITY MAPPING

This appendix will outline the derivation of Eq. (5.1).
It is useful to first consider Fθ in Eq. (3.2) with h = η =

0, but to include the effect of vortices. In other words,
we do wish the impose periodicity under θi → θi + 2π.

First, we write the relevant portion of the action in the
form

1

2

∫
d2r∂iθaCia,jb∂jθb (B1)

where the indices i, j, a, b extend over x, y, and the
matrix of couplings C can be easily related to the elastic
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FIG. 5: The signs of β(h) and β(y) in the K1 − K2 plane for
K3 = −3K2/5 and K4 = 4K1/5. The line which indicates
β(h) = 0 always lies below the line describing β(y) = 0 and
consequently h and y are never both irrelevant.

constants Ki in Eq. (3.2). Now, we decouple this by a
set of currents Jia and write the action as

∫
d2r

[
1

2
JiaC−1

ia,jbJjb + iJia∂iθa

]
(B2)

Imposing periodicity in θi → θi + 2π is now equivalent
to the requirement that the Jia are integers. We now
integrate the θa out, and solve the resulting constraint
equations by writing

Jia =
p

2π
ǫij∂j θ̃a. (B3)

The constraints that the Jia are integers can now be im-

posed by demanding that the θ̃a take values which are
integer multiples of 2π/p. As usual, we can soften this
constraint by introducing a vortex fugacity y, and so ob-
tain the effective action

∫
d2r

[
p2

8π2
ǫii′∂i′ θ̃aC−1

ia,jbǫjj′∂j′ θ̃b − y
∑

a

cos(pθ̃a)

]

(B4)
Upon explicitly working out the inverse of the matrix C,
we find that this action has exactly the same form as the
original Fθ, with the vortex fugacity y playing the role
of the lock-in field h, and the couplings Ki replaced by

the couplings K̃i in Eq. (4.18).
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