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A theoretical study of the dynamics of electron spins in disordered insulators and metals is
performed. Spin diffusion is found to slow down at low temperatures, making the system
unusually sensitive to spin-dependent perturbations. This sensitivity shows up in an unusual
frequency and temperature dependence of the linewidth and resonance field of the electron
spin resonance (ESR) signal. These results are used to interpret recent ESR measurements in
phosphorus doped silicon in both the insulating and metallic phases, and good agreement is

obtained with experiment.

. INTRODUCTION

Doped semiconductors, and especially Si:P, have been

- used extensively in recent years to understand the properties
of disordered interacting electrons.’ With increasing doping
™ the system is known to uridergo a transition from an insula-
tor to a metal at a critical dopant density 7. In this paper we
focus upon two recent ESR experiments in Si:P, one on the
insulating side* (n~n./2) and the other on the metallic
side® just above n,. We show how these experiments can
yield useful information on the nature of the spin excitations
on both sides of #,.. A unified picture of the slowing down of
spin diffusion with falling temperatures emerges from our
analysis. This behavior is believed to be an important ingre-
dient in determining the universality class within the scaling
picture of the metal-insulator transition. In Sec. II we de-
scribe the spin dynamics in the insulating phase in detail
. (part of this study is discussed elsewhere*). We present new
results which show how traditional methods fail for spin
excitations localized on small clusters, and discuss how to
correctly deal with quantum fluctuations in such a case. Sec-
tion III summarizes results for the metallic phase,> and
conclusions are drawn in Sec. IV.

IL. INSULATOR

The ESR experiment’ was done in a transverse field
with a low ac frequency while scanning the longitudinal dc
magnetic field. The ESR absorptiofl spectrum was a Lorent-
zian as a function of the dc magnetic field. The experiment
showed not only a large temperature (T") dependence to the
resonance field and linewidth, but found that these quanti-
ties also depend strongly on the frequency. As we show,
these effects are a consequence of the slowing down of spin
diffusion, which makes the electron resonance absorption
quite sensitive to their coupling to the phosphorus nuclear
spins. At low doping densities, the electrons are bound in
hydrogenic states about the phosphorus nuclei and interact
with each other via an exchange interaction. The system can
therefore be modeled as a disordered Heisenberg antiferro-
magnet.® Because of the wide distribution of bond strengths,
varying over several orders of magnitude, pairs of strongly
coupled spins tend to lock into singlet states hierarchically,
as temperature 7 becomes less than the exchange constant J.
™ The small polarizability of the singlets leads to a slight renor-
malization of the interactions of the remaining weakly cou-
pled spins. Thus to understand the nature of the low lying
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spin excitations at any given T we need only look at the spins
which have not yet been locked into singlets.

Because of the dilution of the bond strengths with de-
creasing 7 we may assume that over the time scales relevant
for an ESR experiment (T5,), the spin excitation is localized
over a cluster of size N. We show that when N becomes small
at the low temperatures where interesting experimental ef-
fects occur, well-known classical methods for analyzing the
linewidth break down. Consider, to start with, an exactly
soluble problem: two electron spins S, in an external mag-
netic field h interacting with each other via an exchange con-
stant J and with their respective nuclear spins I, with a hy-
perfine constant A. The Hamiltonian H for the system is

H=JS,'S2 +A SI'II—"A Sz'Iz+h'(Sl+Sz). (1)

In the limit J,4 > A, by solving the electron Hamiltonian ex-
actly and treating the nuclear coupling in first-order pertur-
bation theory, we obtain the eigenvalues:

Eyp= —3J/4,

E,,=J/4+mlh+Al+i)/2], m=0,41,(2)
where i, and 7, are the eigenvalues of the nuclear spins. The
hyperfine coupling gives a series of lines in the ESR spec-
trum. The mean square moment of the absorption spectrum
can easily be evaluated from the above energies:

((Aw)?) =T52=47%/8, : (3)
i.e., a line whose width is reduced from the single electron

value of 4 /2 by a factor /2. This reduction can be interpreted

as an effect of motional narrowing and is independent of J.
The standard method of moments evaluates the

linewidth from the mean square and fourth moments:

Tr([HS,])? 42

Aw)?) = ——1 =37 L

((Aw)?) IS’ 7

((A )4>—Tf([H’[H,Sx]]>2_A212 @
LR TrS2 P

where in the second equation we have assumed 4 <J. As-
suming that the absorption spectrum falls off sufficiently ra-
pidly in the tails (argument due to van Vleck’) we obtain a
linewidth,

Ty '=A4%/2, ‘ 5

which suggests that the line continues to narrow with in-
creasing J, unlike the correct result Eq. (3). This discrepan-
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cy can be traced to a slight mixing of the electron spin singlet
and triplet manifolds from the coupling to the nuclear spins.
The mixing leads to a weak absorption in the ESR spectrum
of strength (4 /2J)? at the frequency J away from the center
of the line. The weak absorption in the tail, however, doubles
the second moment and completely dominates the fourth
moment. Physically, the correctness of the initial calculation
is clear: these weak absorptions deep in tail are really not
relevant in the linewidth considerations.

Using this insight we generalize to the NV spin cluster.
The total Hamiltonian in this case would be

H=YJ;S:S; + AYS;L; + Y S;h. (6)
i<j i i
The electron part of the Hamiltonian yields a set of mani-
folds spaced apart by an energy of order J and degeneracy
(2§ + 1). By the Clebsch—-Gordon decomposition theorem,
within each manifold the individual electron spins can be
written in terms of the total spin S, = ;S where @, are con-
stants which depend upon the distribution of exchange con-
stants and obey the constraint 3,a;, = 1. The projected

.Hamiltonian in this manifold is
H= S'(z a,'I,' +h)9 (7)

which is the Hamiltonian we work with. We consider differ-
ent limits.
(i) Large A, arbitrary N:

We may apply the method of moments to obtain

y_ 1 _A G o A7

((Aw) >_T§ 7 Za,_,‘”v. (8)
In this limit, motional narrowing on a cluster of size N nar-
rows the line by a factor of N regardless of the overall
magnitude of the exchange constants provided they are
much larger than 4.
(ii) Large N, arbitrary 4:

The total magnetic field acting on the electron with spin
Sis (h 4 g) where g = 4%,a,], is the internal field satisfy-
ing the commutation relation

[ 8.8 ] =i€,,4 22{1?1,-,,. N (9)

Defining
A2 (g /3=(4%/4)Y ai=A%/(4N),

the RMS value of the right-hand side of Eq. (9) is 2A%/yN
whereas the left-hand side has a value of order A% In the
large N limit, therefore, the commutator of g can be neglect-
ed and g behaves classically. We may also show in this limit
(g2") = (2n — 1)!1A?" implying that g obeys gaussian statis-
tics. Thus we may calculate the ESR dynamics in a field
(g + h) and then average over the gaussian distribution of g.
In the large & limit the answer agrees with (i), as could be
expected.

(iii) Small N and 4: : :

In this case analytic methods are not available and exact
diagonalization has to be performed. The diagonalization is
tractable for N up to 7, but we may get information for larger
sizes by choosing special values of the ;. We find that the
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FIG. 1. Linewidth as a function of temperature for two different frequen-
cies. The dashed line is the theoretical fit for determining N(7) while the
full line is the theoretical prediction. The constant 4 is 42 G.

ESR spectrum does indeed show a frequency dependence to
the resonance field and linewidth. We assume that the sole
effect of temperature is to change the effective (average)
cluster size V. In the experiment the ESR spectrum is actual-
ly a superposition of a distribution of cluster sizes, which, we
conjecture, leads to the Lorentzian line shape. The function
N(T) is determined by fitting the experimental linewidth at
the higher frequency (where the results are almost classical )
asshown in Fig. 1. The remaining data on the resonance field
and linewidth is now predicted with no further adjustable
parameters, and a comparison of theory with experiment is
shown in Figs. 1 and 2. Considering the simplicity of our
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FIG. 2. Resonance field as a function of temperature for two different fre-
quencies with the theoretical predictions. The constant 4 is 42 G.
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model, it is heartening that the calculation captures the cor-
rect trends in the unusual temperature and frequency depen-
dences.
The cluster size distribution N(T') can also be obtained
independently from a simulation of the disordered antiferro-
agnet. We impose the requirement that the exchange con-
stants J; in the cluster are large enough that the spin excita-
tion can propagate across the cluster before it dephases with
the rotating magnetic field. The resuits of this analysis have
been published elsewhere* and agree well with the above de-
termination of N(T').

lil. METAL

The electrons are now delocalized, and travel by the
nuclear spins at the Fermi velocity, leading to a motionally
narrowed linewidth (AH,,,)o~A%/E;. In a disordered
metal, the diffusive motion of the electron spin leads to a

orrection to this ballistic linewidth.>* In particular, while
the spin is diffusing, repeat visits to the same phosphorus
nuclear spin reduces the amount of motional narrowing,
leading to a broader line. This effect can be expected to in-
crease as the spin diffusion slows down. Indeed one can show
analytically,? not too close to the metal-insulator transition,
that the renormalized linewidth AH, , is given by

D
AH, ,(T) = (AH,;5) —2—,
1/2( ( 1/2 ODS(T)
where D, is the temperature dependent spin diffusion coeffi-
cient and Dy =~v;/ /3 is the bare Ioffe-Regel spin diffusion
constant. The broadening of the line has now been related to
he slowing down of spin diffusion. A quantitative under-
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standing of the decrease of D, is not as easy as on the insulat-
ing side. Perturbation theory in disorder shows that long
wavelength spin and density fluctuations enhance the spin
susceptibility and suppress D, by the same temperature de-
pendent factor.® The prediction of our analysis here would
therefore be that the linewidth and the susceptibility remain
directly proportional to each other with falling tempera-
tures. Experimentally this expectation is borne out very
well.?

IV. CONCLUSION

We have presented a unified picture of the slowing down
of spin diffusion in insulating and metallic Si:P. ESR has
been shown to be a powerful experimental probe in under-
standing the nature of spin excitations, and amenable to a
theoretical analysis. Such an analysis is an important ingre-
dient in a complete understanding of the nature of the metal-
insulator transition in a disordered system such as Si:P.
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