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Abstract

We extend recent low temperature analyses of competing orders in the cuprate superconductors
to the pseudogap regime where all orders are fluctuating. A universal continuum limit of a classical
Ginzburg-Landau functional is used to characterize fluctuations of the superconducting order: this
describes the crossover from Gaussian fluctuations at high temperatures to the vortex physics near
the onset of global phase coherence. These fluctuations induce affiliated corrections in the correla-
tions of other orders, and in particular, in the different realizations of charge order. Implications
for scanning tunnelling spectroscopy and neutron scattering experiments are noted: in particular,
there may be a regime of temperatures near the onset of superconductivity where the charge order
is enhanced with increasing temperatures.



I. INTRODUCTION

A number of recent experimental [, 2,13, 4, 5, 6] and theoretical [7, 8,9, 10, 11,112, 13, [14,
15, 16, 117, 18, 19, 20, 21, 22] works have explored the interplay between the multiple order
parameters which characterize the ground state of some of the cuprate superconductors.
Good evidence was obtained for a strong coupling between the superconducting order and
density wave order in spin/charge/bond correlations (described more precisely below). In
particular, by tuning the superconducting order by an applied magnetic field at very low
temperatures (T'), a strong field-dependent variation was observed in the latter correlations.

In this paper, we explore the possibility of observing related correlations in the finite
temperature ‘pseudogap’ region above the superconducting critical temperature, 7T,.. Here,
the superconducting order has strong 7" dependent fluctuations. We will show that the
model of Ref. 8 predicts that such fluctuations lead to a corresponding sympathetic variation
in the correlations of the other orders. We provide a computation of certain universal
characteristics of the T" dependence of such fluctuations. Our results will also be formally
extended to T" < T, for completeness, but it must be noted that we neglect the interlayer
coupling and quantum effects, which become important at lower 7T'.

We begin by defining the order parameters under consideration. The primary order
is the complex superconducting order W(r) which describes the spatial variation in the
order associated with condensation of Cooper pairs. This is expected to undergo strong
‘phase’ fluctuations [23] for 7" near T.. Using the proximity of the underdoped cuprates to
a superfluid-insulator quantum transition, Refs. 24, 25 argued that ‘amplitude’ fluctuations
should be treated at an equal footing, and proposed that such thermal fluctuations could
be described by a classical partition function of a suitable universal continuum limit of the
Ginzburg-Landau free energy: this will be reviewed here in Section Il Such an approach
describes the crossover from Gaussian superconducting fluctuations at temperatures well
above T, to the vortex physics of the Kosterlitz-Thouless transition near 7T.. A dynamic
theory with a similar static component (although with a lattice cutoff) was recently used
[26, 27, 28] to describe the notable measurements [29] of the Nernst effect.

This fluctuating superconductor is also expected to have appreciable correlations in other
order parameters. The spin-density-wave order is described by the complex 3-component
vectors @q, ®yo, Where o = z,y, 2 extends over the 3 spin directions, and the spin operator
on site r, S,(r) is given by

Sa(r) = Re [T, (r) + 0™ Dy (r)] (1.1)

Here K, , are the spin-density-wave ordering wavevectors along the x and y principle axes
of the square lattice: near a doping of 6 = 1/8, we have K,, = (37/4,7) and K,, =
(m,3m/4). In a similar manner we can define bond order parameters ¢,, ,(r) by examining
the modulations in the exchange energy of a pair of spins separated by a distance a:

Sa(r)Sa(r +a) = Re [eiK“'rqbam(r) + eiKcy'rqbay(r)} . (1.2)

The special case a = 0 of ¢a;, is a measure of the charge density wave order. Comparison
between ([L2) and (1) suggests that the ordering wavevectors are related by K., , = 2K, 4,
and this is observed experimentally.

A number of other order parameters which are invariant under spin rotations, like ¢ay 4,
can also be defined [, [14]. These include the site charge density, the average electron kinetic
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energy in a bond, or modulations in the pairing amplitude. By symmetry, all such quantities
will have modulations at the wavevectors K., ,, and we can therefore expect that their order
parameter fluctuations will track those of ¢a,,. Differences in microscopic physics can, of
course, make some of these modulations much larger than others. We will not explicitly con-
sider all such possibilities here, and the reader should view ¢,, , as a suitable representative
of the order parameters characterizing modulations at the wavevectors K., , in observables
invariant under spin rotations. We will subsequently refer to the order represented by ¢
simply as charge order.

While the focus of this paper is on the interplay between the superconducting fluctuations
and the orders mentioned above, it should be clear to the reader that our considerations are
quite general. Simple extensions lead to similar effects in the interplay of superconductivity
with most of the other orders in the zoo of possibilities considered in the theory of the
cuprates.

In considering correlations of ¥, ® and ¢ in the fluctuation region, it is important to con-
sider the influence of random static impurities which are invariably present in the cuprates.
As almost all impurities preserve electron number and spin rotation invariance, their influ-
ence on ¥ and ® will consist of perturbations in the random exchange class (this is discussed
more explicitly in Section [l). In contrast, the order ¢ breaks only lattice symmetries, and
is consequently subject to the far more disruptive random field perturbations [30]. In two
spatial dimensions, this implies that true long-range order cannot develop as T" — 0, and
that the ¢ correlation length saturates at a finite value. We will assume here that there is
a local onset of ¢, ®, and ¥ orders at temperatures where the pseudogap develops, but at
lower temperatures ¢ correlations are predominantly controlled by the random-field disor-
der, and have only a weak, intrinsic 7" dependence. This is also consonant with the result
that thermal fluctuations are irrelevant at the random-field transition in higher dimensions
[30]. In contrast, the fluctuations of W and ® are strongly 7' dependent, and can have an
infinite correlation length as 7" — 0. The ¥ order becomes quasi-long-ranged at T = T,
and has the strongly T-dependent Gaussian-to-vortex crossover noted above at T' > T.. The
® order can also have the exponential rapid 1" dependence associated with the breaking of
O(3) spin rotation symmetry as 7" — 0.

This paper will consider the regime above T, where

(U(r) =0 5 (Paya(r)) =0 ; (dazy(r)) #0 (1.3)
The non-zero value (¢) is due to the presence of random-field perturbations which explicitly
break lattice symmetries, and so allow ¢ to locally have a non-zero mean value which will
fluctuate randomly as a function of r. As noted above, we assume that (¢) only has a
weak intrinsic 1" dependence. However, the fluctuations of the ¥, ®, and ¢ orders are
not independent, and so the strong T dependence associated with the Gaussian-to-vortex
crossover in ¥ will induce a corresponding T-dependent variation in (¢). This paper will
compute this variation and suggest associated experimental tests. Strictly speaking, because
there is only quasi-long-range order in W below T, the expectation values ([L3)) apply also
for T'" < T,.: indeed, our methods and results extend also to 7' < T.. However, as noted
earlier, we neglect the effects of interlayer couplings and of quantum fluctuations, and so
our low 7' results should be treated with caution.

Our theory for the fluctuating orders and their interplay is summarized in Section [,
which also contains are main results. Details of the continuum theory of the superconducting
fluctuations and its Gaussian-to-vortex crossover appear in Section [Tl Section [Vl discusses
experimental tests and possible extensions of our theory.



II. CORRELATIONS BETWEEN FLUCTUATING ORDERS: MAIN RESULTS

This section will introduce the free energies which control the fluctuations of the order
parameters, and state our main results on the T" dependence of the ¢ order at T" > T..

We describe the fluctuations of the superconducting order W(r) by a classical continuum
partition function over the Ginzburg-Landau free energy [24]

Zar = /D\I}(r)e_FGL/(kBT)

Fou = [ | gl TU I + DO + o) 2.)

We use here the notation of Refs 26, 27, 28: m*, a(T), b are parameters which can be
computed, in principle, from the microscopic physics of the underlying electrons. The co-
efficient of |¥(r)|2, a(T'), vanishes at a mean-field transition temperature, a(T) = 0, which
will be distinct from the temperature 7T, at which there is a Kosterlitz-Thouless transition
i.e. a(T,) < 0. The purely two-dimensional, and classical theory (ZTI) is expected to apply
to the cuprates only for T" > T,: below T, we have to also account for three-dimensional
effects arising from interlayer couplings, and for quantum effects at low enough 7'. All such
effects will be neglected here, but for completeness, we will nevertheless discuss properties
of the theory (1) over the full range of 7" values.

An important point is that the functional integral in (Z7]) is not defined on its own, and
needs an ultraviolet regulator. In the physical system this is provided by the underlying
electron physics on the lattice, but this is very difficult to characterize explicitly. Here, we
shall follow the procedure proposed in Ref. 24: the ultraviolet dependence can be accounted
for by a suitable renormalization in the value of a(7"). However, because we do not know the
explicit form of the ultraviolet cutoff, we cannot a priori compute the needed shift in a(7T).
This lack of knowledge can be circumvented by using the experimental value of T, as an
input into our calculation. The knowledge of the actual T,., combined with the parameters
in (00 then allows a quantitative computation of the Gaussian-to-vortex crossover with no
free parameters. We re-iterate that (2) cannot be regarded as a fully predictive theory
on its own, and so cannot, even in principle, predict the actual value of T.: once T, is
determined by other means, precise quantitative predictions for other observables become
possible.

The Gaussian-to-vortex crossover can be expressed in terms of the following dimensionless

parameter
h? [a(T) a(TC)] . (2.2)

9= b | ksT ~ kT,
The parameter g should be a monotonically increasing function of 7. For T < T,, g ~ —1/T,
at T' = T,., we have g = 0, and above T, g takes positive values. We will see later that
the present continuum theory eventually breaks down at large 7', when g begins to acquire
a non-monotonic dependence on 7. The value of 1/|g| is a measure of the strength of
corrections to the mean field theory of Zqy.

Aided by the results of Ref. 24, 132, 133 we will show that it is possible to obtain precise
predictions for a variety of correlators of Z5. We quote a result which will be useful in our



analysis here of multiple order parameters:

w [{r), (),

m* | kgl kpT.

=D(g, T/Tz) (2.3)

where D(g,T'/T,) is a universal function. The averages on the left-hand-side are evaluated
under the partition function Z¢y, at the indicated temperature. We will show in Section [l
that it is possible to re-express the two argument function D(g,7T/T.) in terms of a single
argument function F(G) as in (BI2), where G depends upon g and 7'/T, as in (BI1]). Here
we present results for the initial crossover from the Gaussian to the vortex regime, which
occurs when g > 1:

1
m2g

In*(13.3gT/T.) — 2In(7.869T/T.)| + O(1/g%). (2.4)

1
D(g,T/T.) = —%ln(38OgT/TC) + 5 In(13.3¢97'/T,)

+ 473 g2
The numerical constants appearing in the arguments of the logarithms are universal. These
constants, and the constants appearing in the arguments of all subsequent logarithms, de-
pend on only two universal numbers that have to be determined by computer simulations:
the latter numbers are the constant G, computed first in Ref. 24, and the constant ¢ com-
puted in Refs. 32, 33. Additional higher order terms in (ZZ4]) have also been computed
and these will be presented in Section [} we show there that it is possible to account
for all logarithmic terms that appear at higher orders in g. Numerical results for the full
range of values of g appear in Section [IIl. The expression (23)) has ignored the possible
T-dependencies of m* and b for simplicity: it is possible to account for these in a similar
manner, as will become clear from the discussion in Section [Tl
Let us turn now to the density wave order parameters ®, ¢. The complete effective action
for these order parameters has a rather complicated structure and was discussed in Ref. I&.
A simple Gaussian form will be satisfactory for our purposes here:

Fo = [ [Kaul Vo@al? + Ky |V, sl + £5710s0
+ha (1) B (0) + By, (D)0 (1) + (2 = y) + ..
Fo = /dzr K oal Vibaa? + Koy |Vy e * + 57 G|
+ha (1) Bar (1) + B (1) Gan(r) + (x> y) + .. ] (2.5)

Apart from the usual Gaussian terms [§], the above contains complex random fields he(r)
and he(r) which pin the ‘sliding’ mode of the charge density wave. These fields arise from
impurities which preserve spin rotation invariance: as a consequence, notice that the random
coupling is linear in the fields ¢, but that there is only a random-exchange coupling to O(3)
rotations in the spin density wave order. These simple facts have a number of interesting
implications:

(i) There can be no long range charge order in two spatial dimensions, even at 7' = 0. This
implies that there can be no T'= 0 quantum critical point, tuned by the hole concentration,
associated with the onset of such order. A quantum critical point associated with the



restoration of O(3) symmetry remains possible.
(7i) The strong relevance of such random-field perturbations suggests that in the absence of
couplings to other critical order parameters, the correlation length §4 can be assumed to be
roughly temperature-independent at low temperatures.
(7ii) The theories (21]) and (Z3) describe a phase in which the expectation values in ([L3)
hold.

Finally, as promised, let us consider the influence of the ¥ fluctuations described by Zq,
on the charge order correlations. The simplest coupling between the orders is a A|¥|?(|¢az|*+
|Pay|?) term, and, as in Ref. ¥, this leads to the leading order correction

(1) = & (1) + A ([0[*)_ . (2.6)

Here &40(7T') is the ‘bare’ correlation length of the ¢ order, which is expected to be only
temperature dependent near T.. We input the value of (|¥|?) as computed in (Z3) and
Section [ and obtain our main predictions for the superconducting fluctuation-induced
modification in the ¢ correlation length.

III. CONTINUUM THEORY OF THERMAL SUPERCONDUCTING FLUCTUA-
TIONS

This section will review the results of Ref 24 relevant to obtaining ([23)) and (Z4]) and
its extensions. Appendix [A] will review the work of Prokof’ev, Ruebenacker, and Svistinov
[32,133] on the dilute two-dimensional Bose gas and show that the results of their numerical
simulations can be mapped onto universal quantities needed here.

Ref. 24 studied the following continuum theory of a N = 2 component real scalar ¢,
a=1,2:

1 R U 2
I A N 2 , v o9 U /9
Fo= [ |50+ Gt L () 1)
(Here we have changed notation for the field, from ®, in Ref. 24, to ¢, here, to prevent
confusion with the spin density wave order.) This theory maps onto (1) with the following
correspondences:

V= V(@ + i) /R

R = 2m*a(T)/R?
U = 12m*?p/n* (3.2)

It was argued [24] that the continuum limit of F,, required only the single renormalization

of R to R: A
Fon_ 2kgTU k1 .
3 A2 k2 + R
Here we have introduced an ultraviolet cutoff A which is needed to regulate the theory
F,. The renormalization in (B3)) is associated with logarithmic ultraviolet divergence of the
one-loop ‘tadpole’ diagram; the renormalized R in the propagator on the right-hand-side
accounts for tadpoles-on-tadpoles etc. All other diagrams are ultraviolet convergent, and

hence the simple structure of the renormalization theory.

(3.3)



It is important to note that (B3) is the exact definition of R, and consequently R is not
the fully ‘self-energy’ of the ¢, field at zero external momentum; R only accounts for the
resummation of tadpole graphs. In practice, the relationship (B3] implies that, when we
perform a Feynman graph expansion of any observable, we can ignore all tadpole graphs,
and replace R by R in all propagators. Notice also that as the bare coupling R extends from
—00 to 0o, the renormalized coupling R extends from 0 to oo.

After the renormalization of R to R, all subsequent correlators of F, are ultra-violet
convergent, and so we can safely take A — oo in them. This implies that all these correlators
are universal functions of the single dimensionless quantity that can be obtained from the
parameters in (BI): this is the analog of the ‘Ginzburg ratio’, defined here as

 kgTU
" R

For T < T, where R < 0, we have G — oo. Conversely, for T > T., R > 0 and G — 0.

The field theory (BJ) exhibits a Kosterlitz-Thouless transition at some critical tempera-
ture, and the arguments above imply that this transition occurs at a universal critical value
G = G.. The numerical studies of Ref. 24 found G, ~ 102. The value of G, can also be
obtained from the subsequent, and more precise, numerical simulations of Refs. 132, 33; this
connection is discussed in Appendix [Al and ([AH) yields

G (3.4)

G.=96.9+3 (3.5)

We are interested here in the value of (p?). This quantity requires a single additive
renormalization before the continuum limit is obtained; hence we can write
2 APk 1
{pa) _ o [N LK N
k BT 47 2 ]f2 + R

F(G) (3.6)

where F(G) is a universal function. A number of analytic results for this universal function
can be obtained from the methods of Ref 24, and details appear in Appendix [Bl For G — 0
(corresponding to T' > T.), perturbation theory in powers of U about the ¢, = 0 saddle
point yields

F(G — 0) = (2.355711 x 1079G% + 0(G?) (3.7)
All subsequent terms in the above expansion involve only integer powers of G and there are

no logarithms. For G — oo (corresponding to 7' < T), we expand about a saddle point
with ¢, # 0. As shown in Ref. 24, this is done by introducing a ‘dual’ coupling Gp related

to G by G
1 1 1
§+%:6_7Tln<%> (38)
Note that as G — oo, Gp = 37/InG. For large G, the expansion of F' is
_ (9N 6§ 2
F(G—o0)=5-1n (QD) G+ 0Gh). (3.9)

All subsequent terms in the present expansion involve only integer powers of Gp, with no
additional logarithms. As discussed in Appendix [A], the numerical results of Ref. 32, 133
yield the values of F' for all values of G. In particular, at the critical point G = G. we have

from (AR
F(G.) = 0.502  0.003 (3.10)
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FIG. 1: Plots of the universal function F(G). The line on the left is the small G approximation in
B). The line on the right is the large G approximation in ([BX]) and (B3). The square symbols
are the numerical data of Ref. 33 transformed by ([A9) and (AT0). The plus marks the position of
the Kosterlitz Thouless transition.

The theory of the Kosterlitz-Thouless transition implies that F'(G) will have a weak essential
singularity at G = G,, similar to that in the specific heat. A plot of the values of F(G)
appears in Fig[ll It is interesting to note that either the small G or the small Gp expansions
is accurate for the entire range of G values.

The discussion so far presents our most complete results for the properties of F¢y, and F,,
with essentially no approximations. There is, however, still some residual cutoff dependence.
This can be removed by subtracting corresponding results at two different values of the
bare coupling R/T (or m*a(T")/T), while U fixed. Depending upon the physical situation,
changing R /T may also involve some changes in the values of U. However, such changes are
expected to be small and we neglect any 7" dependence in U and A in the remainder of this
section. This allows to obtain an explicit relation between the dimensionless number G used
in the present section, and the number ¢ in ([Z2). Dividing (B3]) by kT and subtracting
the corresponding equation at the critical point, and using the definitions in (B2)) and (B4),

we obtain
+ 1 <Tg0)
=— ——+—In )
976 ¢ "7 \1g

As expected, g extends from 400 to —oo as G extends from 0 to +o0o0. Applying the same
procedure to (B0) we obtain the universal function in (Z3])

1 T.
D(g, T/T.) = —1In (ng

2m
The expressions (BH), (B1)-([BI2) constitute the central results of this paper. Using as input
the values of g and T/T., we compute G from ([BIIl) and Gp from (BH); then using results

6 6

(3.11)

)+ F(G) - F(G.) (3.12)

8



B0 and (BY) we can compute F(G), and finally insert in (BI2) to obtain D(g,T/T.). In
particular, the small G expansion in ([B) yields 4. Of course, it is better to numerically
solve for G from (BITl), rather than obtaining the solution order-by-order in 1/g as was done

for (241).

We now present some numerical results for the parameters used by Mukerjee and Huse
[28]. They set a(T) = ao(T — TMF). Inserting this in ([ZZ) yields

5205

The parameterization a(T') = ao(T — TMF) is chosen to be valid near T, but can also
be reasonably extended as T — 0 (in BCS theory, we expect a divergent (7T — 0) ~
—In(1/T), but this divergence is expected to be cutoff near a superfluid-insulator transition).
By ps(0) = —h%a(0)/(m*b) in (BI3), we mean the value of the helicity modulus of Zg;
extrapolated to 7" = 0 in this manner (the London penetration depth is related to the
helicity modulus by A\;? = 16me2p,(T)/(h*c?)). It is worth noting here that p,(0) and
T. are, in general, independent of each other, and the Nelson-Kosterlitz relation [31] only
constrains p(7T,)/T. = 2/.

This framework now predicts all physical properties with 2 input parameters: the values
of ps(0) and T.. Mukerjee and Huse [2§] also defined a parameter 1 as a measure of the
strength of fluctuations. This is related to the parameters used here by n = 2kgT ¥ /p,(0).
In our numerical results below, we set p,(0)/(kgT.) = (2/n)(TM¥/T.) = 6.8, following their
parameters.

An important subtlety should be noted here. The use of (BI3)) in (BI1) normally yields
a value for G which decreases monotonically with increasing 7', as seems reasonable, given
our understanding of physical properties of the continuum theory. However, because the
value of ¢ in (BI3) saturates as 17" — oo and because of the presence of the In(7"/T.) term
on the right-hand-side of (BI1), for very T" the value of G eventually starts increasing with
increasing T'. This is clearly unphysical, and is an indication that the present continuum
theory breaks down at large enough 7. For the value of 77 being used here, this unphysical
non-monotonicity arises only at 7/T, > 20, and we will therefore restrict our attention to
values of T" below this.

Solving (BI3) and (BII) for G as a function of T'/T., we use the results of this section
and Appendix [Al to obtain the plot of Fig [ for the quantity appearing in (8). Note, again
that either the small G or the large G expansion is reasonable accurate.

IV. CONCLUSIONS

We conclude this paper by discussing some of the experimental and broader implications
of our work.

Our primary result (Z8) for the coherence length of the charge order can be tested against
neutron scattering and scanning tunnelling spectroscopy (STS) experiments. However, the
strong random field disorder may make £, inaccessible to a neutron probe which averages
over the entire sample. In contrast, STS provides a local probe, and so may be more sensitive
to the effects discussed here.

Consider an STS experiment with a field of view of area A, such as those performed
in Refs. 15, 16, 116, 34, 135. Quasiparticle interference contributions, such as those computed
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FIG. 2: Plots of the universal function (7'/7,)D(g,T/T.) as a function of T'/T. for ps(0)/(kpT.) =
6.8. From ([23) we see that (|¥|?)r = (T/T.){|¥|?)7, +(m*kpT./h*)(T/T.)D(g, T/T.); so {|¥|?)r is
determined from the above plot up to an additive, non-singular, linear dependence on T" determined
by (|¥|?)7.. This linear T dependence can compensate for the the linear 7' dependence in the plot
above so that (|¥|?)7 saturates at high 7. Also, as noted in the text, the present theory breaks
down at large enough T, and its main utility is in capturing the singular increase in (|¥|?)7 as
T crosses T.. The solid line is the small G approximation obtained by solving ([BH), 1), BI0),
B11), B12), and BI3). The dashed line is the large G approximation obtained by solving (BH),

B, B9, B10), BI0), BIF), and BI3). The square symbols are the numerical data of Ref. 133
processed via (B11), B12), BI3), (AY), and [(AT0). The plus marks the position of the Kosterlitz

Thouless transition.

in Ref. [11], 136, 37, 38, 39, appear at low temperatures, but we can expect that these will
significantly broaden at temperartures above T,.. We therefore focus here only on the contri-
bution of the ¢ fluctuations, which also lead to modulations in the local density of the states
measured in STS, as shown in Ref. [11, 39. We know that the STS measurements are in the
linear response regime. So, when we perform the Fourier transform of the local density of
states at the ordering wavevector K., we find that the signal is proportional to the uniform
part of the charge order parameter, ¢ = ¢(q = 0). Let us estimate ¢. We have for the free
energy

<f>q:0,A ~ —<h2>1/2§2~5141/2 + 6;2&214 (41)

Here we used that the result that the random field energy scales as the square root of the
area. We can now minimize (EI) with respect to ¢

<h2>1/2§§5

¢~ Az (4.2)

Taking &(7T') from Eq. (Z8) obtain get the temperature dependence of the STS signal at
the wavevector K..

For the case of competition between the superconducting (V) and charge (¢) orders, the
coupling A in (ZH) will be positive. In this situation we have a seemingly counterintuitive
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effect: as T is increased through T, the amplitude of the charge order is enhanced. The
physical origin of this is not difficult to understand: the increase in phase coherence as T is
lowered is associated with an enhanced coherent motion of the Cooper pairs, and this leads
to a decrease in the amplitude of the spatial modulations [40)].

An alternative statement of the same physics can be made in terms of the vortices. As
we argued in Ref. &, vortices nucleate charge order, and this was proposed as an explanation
of the experiments of Ref. li. Increasing 1" above T, causes a proliferation of vortices, and
hence an enhancement of charge order.

While our discussion in this paper has been entirely at the level of the Landau theory
of multiple order parameters, it is important to keep in mind that such a theory is an
effective model, and does not preclude other interpretations which focus directly on the
electronic quasiparticles. In particular we can view the competition between charge order
and superconductivity as the competition for the ordering of low energy quasiparticles near
the Fermi surface. So as the superconducting pairing of these quasiparticles is reduced above
T, they are more susceptible to charge ordering.

An interesting direction for future work is to combine the continuum theory of the
Ginzburg-Landau functional presented here with the theory of time-dependent supercon-
ducting fluctuations presented in Refs. 26, 27, 2&: this has the prospect of placing more
precise quantitative constraints on the analysis of the Nernst effect experiments. Moreover,
the accuracy of either the small G or large G expansions suggests that useful analytic re-
sults may be possible. A similar dynamic approach can also be applied to computing the
linewidths of the electronic quasiparticles in the pseudogap regime: the strong amplitude
fluctuations in ¥ should lead to significant broadening in the electronic spectral functions
measured in photoemission experiments.
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APPENDIX A: CORRESPONDENCE WITH THE DILUTE BOSE GAS

This appendix discusses the connection between the analysis of the dilute Bose gas in
Refs. 32, 133 and the results of Ref. 24 and the present paper. Let us make it clear at the
outset that we are not advocating a dilute Bose gas description of the underdoped cuprates;
rather, the finite temperature properties of the dilute Bose gas are characterized by some
universal numbers which appear also in the models of interest in the present paper.

The dilute Bose gas is defined by the partition function

Zp = /Dz/)(r,T)e_SB/h

h/kpT
so = [ ar [ nr Sl v - ate s Pre|
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We follow the notation of Refs. 132,133 throughout this appendix. The only exception is that
the boson interaction U has been replaced by Up, to prevent confusion with the coupling U
in (B10).

Integrating out the non-zero Matsubara frequency modes in the Bose gas, the action for
the zero frequency modes takes the form (Bl) with the coupling constants

R 4 —2U & 1 - T
om B 4m2 \ 0P em—n /6T — 1 12K2/(2m) — u
12m2U
U= -

The integral above is divergent in the ultraviolet, but if we use (B3) to obtain the value of
the renormalized coupling R we obtain a convergent integral:

R 2mp _ AmUp [ &’k ( 1 B kT 2kaT/h2>
h? p? ) Ar? \ e®?R/@m)=w/ksT) — 1 B*R2/(2m) —p K2+ R
_ QkaBTUBl < 2mpu )
B mh h?R(ew/(ksT) — 1)
2
SELUITNEIY a9

In the last expression we have expanded to leading order in Up, as required from consistency
with previous approximations. Now using the definition of the dimensionless coupling G in
B, we obtain the value of the chemical potential at the Kosterlitz Thouless transition

mkpTUg I R€,
7Th2 mUB

with universal number &, computed in Ref. 132 related to the universal number G. computed
earlier in Ref. 24 by

GeeOm/Ge

gu = 6 (A5)
Refs. B2, B3 obtained §, = 13.3 & 0.4, which is in reasonable agreement with the value
G, ~ 102 obtained in Ref. 24; the latter value of G, yields ¢, ~ 14.1 from ([AT).

The same method can be used to compute the boson density n. Integrating out the
non-zero frequency modes and mapping onto the classical theory ([BI) we obtain

. /d2]€ 1 T n m< 2>

" i \ e — 1 12Kz 2m) — ) 2N

d’k 1 T 2mkpgT/h*\  mkgT

4m2 \ e®*k2/@m)-w)/T — 1 R2k2/(2m) — p k?+ R h?
o mk;BTl 2kaT mk;BT
- 2nR? R h?

in the last equation we have made the same simplification as that in the last equation in

([A3)). The result ([Ad) yields the expression obtained in Ref. 32 for the critical density

mkgT h2¢
c — 1 A
e = onnr (mUB> (A7)

F(G)

F(G); (A6)
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o

(b)

(c) (d) (e)

FIG. 3: Feynman graph expansion of () for the correlator (B4).

with the universal number £ given by

= %ew(gc). (A8)

The simulations of Refs. 32, 133 obtained £ = 380+ 3, and inserting this result in ([AS) allows
us to compute F(G.).
Finally, subtracting (A7) from the last equation in ([Af) we obtain

n — N 1

Ty = 37 (9/9) + F(G) ~F(G)
= A(X). (49)

The function A(X) was computed in numerically Ref. 133, and its argument X can be related
to our coupling G by ([AJ), yielding
6 6 1

X:—6+g—c—;ln<§>. (A10)

These earlier results for A\(X) therefore yield the needed function F(G) from ([A9) and ([AT0).

APPENDIX B: WEAK AND STRONG COUPLING EXPANSIONS

This appendix presents discusses the expansion for the universal function F'(G) appearing
in (B6) for small and large G

For small G, a simple Feynman graph expansion of ([BIl) can be carried out to order
Q~2, with the diagrams shown in Fig All propagators in Fig Bl involve the bare ‘mass’
R. A simple calculation shows that the graphs (a,b,c,e) are all absorbed by the first term
on the right-hand-side of (B6), after substitution of (B3). This is a simple example of our

13



claim that all ‘tadpole’ diagrams can be neglected after substituting R for R. Only Fig Bd
contributes to F(G) in (BH), and yields

2G? rd*p [ d%*q [ d*k 1

9 Jarz) a2 ) a2 R+ 1022+ D) ((p+ k)2 + D((p+q)2+1)
2g? @[ 1 ln<\/7p2+4+p>]

9 J 4n? | 2apy/p? +4 VPP +4—p

F(G) =

d g e Sl

We evaluated the last integral numerically and obtained (B.1).
For large G, the method described in Appendix C of Ref. 24 was used. To one loop order,

the result SR ) R
—_ D - [—
FO) =175 o <RD> (B2)

is easily obtained, where, as in Ref. 24, RpGp = RG. In obtaining ([B2), we have to explicitly
account for all tadpole graphs, and the relationship in (2.4) of Ref. 24 between R and Rp.
The large momentum behavior of the expansion about ¢, = 0 and ¢, # 0 saddle points
should be the same, and this ensures that the ultraviolet divergences cancel. At two loop
order, 35 Feynman graphs appear; these were evaluated as in Appendix C of Ref. 24, and
their sum was found to vanish. Consequently, there is no order Gp term in F', and the result

B3) follows.
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However, it should be noted that the bare coherence length £40(7) is likely to have a T'
dependence which acts in the opposite direction: i.e. a decrease in the amplitude of the
charge order with increasing 7. This latter effect will not be singular near T, but should
eventually dominate at high enough T
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