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A theoretical study of the spin-resonance signal of electrons in a disordered metal with

nuclear-spin impurities is performed.

It is found that there are singular corrections to the

linewidth near two dimensions. These corrections arise both from disorder and from the disorder-

enhanced electron-electron interactions.

To lowest order in the triplet scattering amplitude, the

increase in linewidth is simply related to the enhancement of the spin susceptibility. These results

are consistent with a recent experiment.

The study of the static and dynamic properties of elec-
trons in disordered metals has evoked considerable
theoretical and experimental interest in the last decade.!*
A complete understanding of the complicated interplay of
the disorder and electron-electron interactions, however,
has not yet emerged. The latest theoretical advances in
understanding the effects of dlsorder-enhanced Coulomb
interactions are the theories of Finkelshtein,? and Castel-
lani and co-workers.*” These theories have pointed out the
special importance of spin fluctuations near the metal-
insulator transition. They predict a strong enhancement of
the spin susceptibility at low temperatures, and an
equivalent suppressiorn of the spin-diffusion constant.

Uncompensated doped semiconductors, and in particu-
lar, phosphorus-doped. silicon (Si:P) are useful systems for
studying the properties of disordered interacting electrons.
The linewidth of an electron-spin-resonance (ESR) experi-
ment on Si:P will be sensitive to any spin-flip scattering in
the system, and is therefore a useful probe of the electron
spin dynamics. In this paper I will develop a theory for the
additional linewidth from spin-flip scattering from impuri-
ty nuclei. The theory will be particularly relevant for Si:P
where the dominant source of the linewidth at very low
temperatures is spin-flip scattering from the phosphorus
nuclei. However, the formulation of the theory is general
enough to be applicable to other disordered systems with
nuclear spin-flip scattering. The results of the analysis are
consistent with a recent experiment in Si:P.5

The Hamiltonian of the system is

H%Ho'*'CZIi‘S(l‘i) . (1)

where Hy is the Hamiltonian for electrons interacting via
Coulomb forces moving in a random spin-independent po-
tential, I; is the nuclear spin (assumed to be spin +) at the
site r;, S(r) is the electron spin-density operator, and C is
the coupling constant. At room temperatures, the elec-
trons will pass by the nuclear spin at the Fermi velocity,
leading to a motionally narrowed linewidth. In this paper
it is shown, to lowest order in disorder and interactions,
that accompanying the slowing down of the spin diffusion
and the enhancement of the spin susceptibility, there is a
decrease in the amount of motional narrowing. This leads
to a broadening of the ESR linewidth as the temperature is
lowered. The broadening is associated with the enhanced
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probability of a diffusing electron returning to a given nu-
clear spin within a single dephasing time. Upon returning
to this nuclear spin, the electron will not see a random
nuclear-spin direction, leading to a decrease in the amount
of motional narrowing. Unusual =ffects on the ESR exper-
iment have also been reported in msulatzng phosphorus-
doped silicon’ and can be well understood in terms of the
slowing down of spin diffusion.?

Hikami, Larkin, and Nagaoka9 and Altshuler and Aro-
nov'® have pointed out that in considering the effects of the
particle-hole ladder (the diffusion propagator), it is neces-
sary to split the various spin comibinations of the electron
and hole into a singlet and a triplet. At room temperatures
the ESR linewidth in a weak magnetic field H (H < T,
where 7 is the temperature; this will be assumed
throughout) is proportional to the “mass” in the triplet
diffusion propagator. This may be calculated by summing
the diagrams in Fig. 1 for the particle-hole ladder L (the
dashed lines represent normal impurity scattering without
spin flip, and the dotted lines are Abrikosov’s pseudofer-
mion propagators for the impurity spin fluctuations'!).

Lopys=+Ls+3L,)8,585+ 5L — L) 0oy 655, (2)
where o are the Pauli spin matrices. L; and L, are the
singlet and the triplet diffusion propagators:

1 1
, L=
Dg*+ | w, | ! 4/10)+Dg?+ | w, |

Here g and @, are the momentum and frequency carried
by the diffusion propagator. (We are using the Matsubara
finite-temperature formalism.) The mass in L,, 4/70 is
2nn;(C/2)?N,, where #; is the density of nuclear spins and
NN, is the density of states at the Fermi level.

This paper calculates corrections to 4/t from disorder
and Coulomb interactions. Analogous effects have been
considered earlier for the noninteracting problem. Opper-
mann'? has analyzed corrections to the magnetic-field de-
phasing time. Recently Wegner' has independently cal-
culated the renormalization of the spin-flip scattering rate
from disorder alone. We show here that there are strong
temperature-dependent corrections to 4/z0 which arise
from the Coulomb interactions. For Si:P, these are the
dominant effects and yield useful information on the
electron-spin dynamics. The corrections to 4/7? from the

Ly= 3
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FIG. 1. The particle-hole diffusion ladder (top) and the generalized interaction amplitude between the particle and hole (bottom).
The dashed lines represent potential scattering, the dotted lines are impurity spin fluctuations, and the wavy line is the Coulomb in-

teraction.

disorder-enhanced Coulomb interactions yield the expres-
sion
4 4

Ts Tgf

The constant f arises from Fermi-liquid theory and G(7")
varies rapidly with temperature. In two dimensions G{(T")
behaves like }In(T'7) |, where r is the elastic scattering
time, provided Tt<1 and Tz;>>1. We parametrize the
corrections to the spin susceptibility in a similar manner:

X =Xplf +Go(T)] (5)

where Zp is the Pauli susceptibility and G,(T') is strongly
temperature dependent. To all orders in the interaction,
.G(T) and G,(T) involve only the triplet-scattering am-
plitude I, and are independent of the singlet interaction
I,. (Here, and in the rest of the paper, we will use the no-
tation of Castellani, DiCastro, Lee, and Ma.*) To lowest
order in T;, G1(T) and G,(T') are identical. Since the
corrections to the spin-diffusion constant are simply relat-
ed to the enhancement of the susceptibility,?* this is physi-
cally appealing because it relates the broadening of the
line to the slowing down of spin diffusion. All of the above

[1+G6,(T)] . )

conclusions are valid only in the limit 7z,>>1 and to
lowest order in the disorder parameter 1/Ez7.

Some details of the derivation of Egs. (4) and (5) will
now be presented. This will be followed by a calculation of
the corrections to 4/70 from disorder alone. For clarity,
details of the calculations of the effect of Coulomb interac-
tions will be presented only to lowest order. The Coulomb
interactoions are described by a generalized interaction
amplitude I between the particle and hole:

Y % (Fs +3I; )5aﬁ881+ %‘ (r: =T, )aaﬂ° Osy » (6)

where 'y and T, are the singlet and triplet interaction am-
plitudes. These are related to the direct and exchange in-
teractions in Fig. 1 by I'; =2I"; ~TI; and I', = —TI',. (Note
that these definitions differ from those of Ref. 4 by a fac-
tor of 2.)

The corrections to the diffusion propagator arise from
interactions which do not involve an exchange of energy
between the particle and the hole.* Graphs for the self-
energy X(g,w,) to lowest order in 1/Ert are shown in Fig.
2. Representation of the spin-flip scattering by
Abrikosov’s pseudofermions now emphasizes the fact that
the correlations between different scatterings arise from
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FIG. 2. Diagrams involving electron-electron interactions with a singular contribution to the self-energy of the diffusion propaga-

tor.
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tracing over the nuclear-spin variables and not from averagmfr over the positions of the impuritics.
The corrections from these graphs to coefficients of g% and a),, are identical to those of Ref. 4 in the limit v/ <<1

Number conservation constrains X to vanish for ¢ =0 and @, =0.14

In the presence of spin-flip scattering, however, this

only constrains the singlet part to X and the triplet part can be nonzero. For ¢ =0 and », =0, Figs. 2(a)-2(e) yield

S355=— T Dp2+0+ [T, L3(p, Q) + 30 L2 (p, )15, pasy———[r L¥(p,Q)—T,L3(p,0)] 06,5 05
o (27 )d # oy
)
Figure 2(f) yields in a similar manner
,,M—Tzf—(z—%, @ +3T)IL(p, Q) +3L,(p, 018,46, + 4T~ 1L (p,02) — L, (p,2)] 045 65} . (8)
l
In the limits 7z,>>1 and 7<1;, we can expand L, in  whichis
terms of L; and 1/7; to obtain the following expression for
the total X. WTLHST Y f——B-I‘stz(p,ﬂ’,)=4tI‘2|1n(T1)|, an

ap 8

Tzf D )d [Lﬁ(p,n)(rs—r,)f

x [—Q—S
s
©)

This is the diffusion propagator self-energy for zero
momentum and frequency. It depends upon both the sing-
let and the triplet scattering amplitudes. Note that the
singlet part of £ vanishes as one would expect from num-
ber conservation. Using the known results for £(g,w,) for
small ¢ and w, from Ref. 4, the renormalization of the
singlet and the triplet diffusion propagators can now be
written:

s 2
apOsy ™ Oep’ Osy|| -
5

2
L= &
D'g*+z lcua,,[ 10
Ll= 54, .

2 u+Dg*+z] o,
Ts

The diffusion constarit D has been changed to D', z is a re-
normalization of the frequency scale, and & is a diffusion
propagator “wave-function” renormalization. The renor-
malization of the spin-flip scattering time is given by u

i

X:(q,0,) =%p(z +TF)

D'/(z+TR) g%+ p/(z +TF)(4/7?)

@n)?

where the last equality is valid only in two dimensions and
t =1/4x’ND. Note that all the corrections involving the
singlet interaction amplitude which appeared in the self-
energy have been completely absorbed in the &, and u only
involves the triplet interaction amplitude. Using the tech-
niques in Ref. 4, the calculation for u can be generalized
to yield the following expression which is correct to lowest
order in ¢ but to all orders in the interactions,

u=‘1+4tln[z+r2] [In(T7)]| . (12)
In perturbation theory, an expression for u to lowest order
in z can be obtained simply by replacing z by 1 in Eq. (12).
A renormalization-group equation for u can also be
developed from Eq. (12). Such an analysis suffers from
the same difficulties as in Ref. 5; The parameters flow to
a strong-coupling regime where the renormalization-group
equations are no longer valid, making quantitative predic-
tions _difficult. However, if the temperature is large
ehough, these strong-coupling offects will not have ap-
peared and the renormalization of the spin-flip time will be
well described by the perturbation-theory expression in
Eq. (12). Using the diffusion propagators in Eq. (9), the
wave-vector- and frequency-dependent susceptibility X
can be calculated (the renormalization of all quantities is
to the lowest nontrivial order in /7 ):

The quantity 'R is the renormalized value of I, including
a wave-function renon‘malization‘. The enhancement of the
susceptlblhty is z+4-T'f. The measured linewidth is
4/z2lu/(z +13)] and yields

G(T)=2t2In(14T,) —T,] [1n(T7) | (14)

in perturbation theory to lowest order in 7z and all orders in
I'; after using the known results for (z +I'%).>~> This will
predict an enhancement of the spin-flip relaxation rate

D/ +TR)G+ |0, | +p/ G +TR) (4/29)

(13)

'provided the bare I'; is not too large. To lowest order in I';
we also find that G,(T') =G (T, as claimed earlier.

Lastly, the small corrections from the disorder alone are
considered. The graphs in Fig. 3 yield logarithmic contri-
butions to £(g =0,w, =0) near two dimensions, leading to
the following corrections to the spin-flip rate:

4 4 1 d%p 1
—==_|1 ) 15)
7y 10 [ aNy v Qr)? Dp2+1/re-e] (
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FIG. 3. The self-energy of the diffusion propagator in the absence of Coulomb interactions.

4

. The quantity 1/z, - is the inelastic scattering time and we
have assumed 7,./ > 17, !. The contributions from these
graphs to Z(q #0,0,) cancel among each other to lowest
order in g2 and do not effect the well-known weak localiza-
tioh corrections to the diffusivity. To lowest order in
1/EFr, the correction to the spin-flip rate in Eq. (15) is
just the 1nverse of the weak localization correction to the
diffusivity.!® Thus, as we found for the interaction correc-
tions, the ESR line broadening and the slowing down of
diffusion are closely related.

To conclude, we have shown that associated with the
slowing down of the spin diffusion, there is an enhance-
ment of the ESR linewidth and its magnitude has been cal-

culated Unlike the experiments on nuclear-spm relaxa-
tion,'¢ it is possible to perform ESR in a very weak mag-
netic field and not perturb significantly the physics of the
disordered interacting electron system. In addition to the
recent experiment in Si:P (Ref. 6), ESR experiments on
other systems will be of great interest.
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