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We study possible paramagnetic phases of antiferromagnets on the Shastry-Sutherland lattice by
a gauge-theoretic analysis of fluctuations in a theory with Sp(2/N) symmetry. In addition to the
familiar dimer phase, we find a confining phase with plaquette order, and a topologically ordered

phase with deconfined S = 1/2 spinons and helical spin correlations.

The deconfined phase is

contiguous to the dimer phase, and in a regime of couplings close to those found in the insulator

SrCuz(BOs3)2.

We suggest that a superconductor obtained by doping this insulator with mobile

charge carriers will be an attractive candidate for observing the anomalous magnetic flux properties

associated with topological order.

I. INTRODUCTION

Much interest has recently focused on téle magnetic
properties of the insulator SrCus(BOsj) 2-- The low
energy spin excitations in this materlal reside on the
S = 1/2 Cu ions which lie in two-dimensional layers
decoupled from each other. The experiments show a
clear indication of an energy gap towards spin excita-
tions, making this one of the few known two-dimensional
systems with a spin gap. Remarkably, the pattern of
near-neighbor antiferromagnetic exchange couplings be-
tween the Cu ions turns out to be identical to that in
a model Hamiltonign studied many years ago by Shas-
try and Sutherland?. These authors also showed that a
simple decoupled dimer wavefunction was an exact eigen-
state of this Hamiltonian, and that it was the ground
state over a restricted parameter regime.

The Shastry-Sutherland antiferromagnet is sketched in
Fig :11' The Hamiltonian is

HlezSi-SJA-JQ Z Si-Sj (11)

(i5) diagonals

where S; are S = 1/2 operators on the sites, i, of a
square lattice. The exchange J; > 0 acts along the near-
est neighbor links (shown as full lines in Fig i), while
Ja > 0 acts on the diagonal links, shown as dashed in
lines in Fig :L It was established? that a simple prod-
uct of smglet pairs on the diagonal links was the ground
state of H for sufficiently large Jo/J;. However, an un-
derstanding of the experiments requires a description of
the excitation spectrum, and also of possible quantum
phase transitions to other states at smaller J3/J;. These
issues have lqeqn addressed in a numbe;r.,gﬁ recent theo-
retical works®®. Most of these studies®-# involve nu-
merical analyses based upon large-order series expansions
departing from various decoupled cluster states. Quan-
tum Monte Carlo simulations have, in principle, a smaller

bias due to the choice of an initial state, and can be ex-
tended to much large system sizes; however, simulations
of H suffer from a sign problem, and so such studies have
not been possible. An analytic mean-field.approach has
also been undertaken by Albrecht and Mila2: results were
obtained mainly for the magnetically ordered states, and
the various distinct paramagnetic states were not distin-
guished.

Quite apart from determining the ground states of the
specific Hamiltonian H, it is also of interest to determine
the phases of models which are “near” the parameter
space of H. This is in the hope that future experiments
may succeed in deforming the insulator SrCus(BO3)2 by
substitutional doping (which can induce mobile carriers),
or by the application of hydrostatic pressure. Doping the
antiferromagnetic insulator La;CuQy led to the discovery
of high temperature superconductivity: related phenom-
ena may be expected here, although, as we shall argue
later, the presence of strong frustration in the parent in-
sulator SrCuz(BOs3 )2 may lead to profound differences in
the nature of a possible superconducting ground state.

This paper will examine a generalization of H to
Sp(2N) symmetry (SU(2) = Sp(2)) and describe the
properties of the large N limit. Some of the phases
obtained in such a large N limit may not actually ap-
pear in the phase diagram of the SU(2) model H— nev-
ertheless, as we have just argued, the phases may still
be of relevance to physical systems whose microscopic
Hamiltonians are near the parameter space of H. Such
an approach has been fruitfully applied to a number of
other, frustrated quantum antiferromagnets in previous
work? 23, The method leads to an unbiased selection of
possible ground states in the large N limit, both with
and without broken spin rotation symmetry. Moreover,
a gauge-theoretic description of the fluctuations about
the mean-field solution allows a systematic and reliable
assessment of the stability of the various ground states,
along with a description of the dynamics of the excita-



tions.

The Sp(2N) generalization of H is defined by introduc-
ing canonical Bose creation operators b on every site i,
witha=1...2N a Sp(2N) index. The allowed states in
the Hilbert space satisfy the constraint

bl b =2NS (1.2)
on every site i (we follow the convention of summing over
all repeated Sp(2NN) indices); the right hand side of (I.2)
must be a positive integer, the values of S are constrained
accordingly—for the physical case, N = 1, S must take
half-integral values, as expected. The Hamiltonian is

H = Q‘ﬁ, (7%bLb]5) (50705
(ij)
2J]if (jaﬁbjabjﬁ) (jvébvbé) (1.3)
diagonals

where J% = J,5 = —Jsa is the generalization of the
antisymmetric € tensor of SU(2) (i.e.) J contains N
copies of ¢ along its center block diagonal, and vanishes
elsewhere).

The large NV analysis of a large class of models, of which
H is a member, was described with some generality in
Section II of Ref. 3. We will follow the same method
here, and so will dispense with the details of the compu-
tation. The resulting mean-field phase diagram is shown
in Fig 8 as a function of Jo/J; and 1/S (in the large N
limit, S becomes a continuous real variable). The posi-
tions of the various phase boundaries are not expected to
be quantitatively accurate for the physical N = 1 case.
However, the general topology of the phase diagram, the
nature of the phases and their excitations, and the crit-
ical properties of the quantum phase transitions can be
reliably described using Fig '3 as a starting point.

The properties of all the phases in Fig 13," will be dis-
cussed in detail in Section H Here we h1ghhght our main
new results.

One of the paramagnetic phases has short-range equal-
time spin correlations peaked at the wavevector (m, ).
[We denote this phase (r, 7) short-range ordered (SRO)
in Fig g; here we are placing the sites on the vertices
of a regular square lattice as in Fig -r_]:, and measuring
wavevectors in units of 1/(nearest neighbor spacing). In
the experimental SrCuy(BOs3)2 system, the positions of
the sites is different, and there will be a corresponding
transformation in the wavevector dependence of observ-
ables.] At the mean, field level, this phase is identical to
that found earlier®¥%% on the square lattice with J, = 0.
However, we will show here that a difference does emerge
upon gopsideration of fluctuations. For Jo = 0, it was
shown$19 that Berry phases associated with hedgehog-
instantons led to columnar spin-Peierls order in the (7, 7)
SRO phase. Here we show that a closely related anal-
ysis for the Shastry-Sutherland lattice leads instead to

“plaquette” order in this phase. Just such gz phase was
considered recently by Koga and Kawakami?.

Our other new results are also associated with a param-
agnetic phase. This phase is denoted (7, ¢) SRO in Fig &
and is obtained by a destroying the long-range magnetic
order in a helically ordered phase. Equal-time spin corre-
lations show short-range incommensurate order, and the
spin structure factor is peaked at the incommensurate
wavevector (7, q) (the value of ¢ varies continuously as a
function of J5/J1). As in previous incommensurate SRO
phases found on frustrated square lattice modelsL i, we
argue that the excitations above the ground state are de-
confined spinons which carry spin S = 1/2 (for SU(2)).
Also as in previous Workg’r-“:, the quantum phase transi-
tion between this phase and the (7, ) SRO (plaquette)
phase (Fig 83) is described by theory of a charge 2 Higgs
scalar coupled to a compact U(1) gauge field; the decon-
finement transition is associated with the condensation
of the Higgs field, an.d. t‘hp. cxitical properties are those
of a Z, gauge theory- obraug g We will also consider
here the transition between the deconfined phase and the
dimer phase: by a somewhat different analysis, we will
show that this transition also reduces to a Z; gauge the-
ory description.

II. MEAN FIELD PHASE DIAGRAM

As discussed in Section I of Ref. 112, a key quantity
determining the nature of the phases is a complex, di-
rected, link field @Q;; = —Q;;. Operationally, this field
is introduced to decouple the quartic boson interactions
in H by a Hubbard-Stratonovich transformation. After
this decoupling, the effective action contains the terms

/ Ty 2 Jij [N|QU|2 Qiy Tapbf? + He] + ...,

>3

(2.1)

where 7 is imaginary time, J;; = Ji (J;; = J2) on the
horizontal /vertical (diagonal) links, and the ellipses rep-
resent standard terms which impose the canonical boson
commutation relations and the constraint (i1.2). It is also
clear from the structure of & that the average value of
Q;; satisfies

(Qij) = <~7wbjabjﬁ> (2:2)
For larger values of S, the dynamics of S requires con-

densation of the b$* bosons, and hence a non-zero value
of

= (b"); (2.3)

such phases break the spin rotation symmetry, and have
magnetic long-range order. As described in Ref :_1%‘, we
optimized the ground state energy with respect to varia-
tions in (Q;;) and =¥ for different values of J5/J;1 and S.



The four-site umt cell of the Shastry-Sutherland lattice,
depicted in Fig Q- has 10 different @;; fields. Care must
be taken to 1dent1fy gauge-equivalent configurations. We
find that each saddle point may be described by purely
real (Q;;). The resulting phase diagram is shown in Figd.
We describe the phases in turn in the following subsec-
tions, conelderlng first the magnetically ordered phases
with z§ # 0 in Subsection TIA. and then the paramag-
netic phases in Subsection IIB.

A. Magnetically ordered phases

1. Néel (m,m) LRO state

This is the familiar long-range ordered (LRO) state in
which (S;) is collinearly polarized in opposite directions
on two checkerboard sublattices. It is known to be the
ground state of H for J, = 0, S = 1/2 in the physi-
cal N = 1 limit. A gauge may be chosen in which the
expectation values of link variables, (Q;;), are nonzero
and equal on the horizontal and vertical links, while the
expectation values on the diagonal links are zero. In
the notation of Fig gthen Q; =P (i =1,2,3,4) and
Ry =Ry =0.

2. Helical (7,q) and (q,m) LRO states

This phase is characterized by non-zero values of (Q;;)
on the horizontal, vertical and diagonal links. A gauge
choice sets all the Q; and P; equal to each other. There
are two gauge non-equivalent choices for the values of
Ri: one state has Ry = Ry and the other Ry = —R5.
The two states are interchanged under a 90° rotation,
and correspond to spirals ordered in the horizontal or
vertical directions. At large values of the spin, this phase
appears at Jo > Ji, in accord with the classical calcu-
lation of Shastry and Sutherland2. Equal-time spin cor-
relations exhibit long-range incommensurate order, and
the spin structure factor peaks at the incommensurate
wavevectors (7, q) or (g, 7) with the value of ¢ varying
continuously as a function of Jo/.J;.

B. Paramagnetic phases

In this subsection we discuss the three phases for which
z$ = 0. As a consequence, spin rotation symmetry is
preserved and only spin SRO arises; however there may

be ordering in other singlet order parameters.

1. Dimer state

This is the exact SU(2) eigenstate of dgcoupled singlet
pairs found by Shastry and Sutherland2. In the large

N limit, this corresponds to a saddle point at which the
(Qij) are non-zero only on the diagonal links: Ry = Ry #
0 and @; = P; = 0. Note that the b boson are spatially
decoupled at such a saddle point: each b§* can only hop
across a single diagonal link. This simplifies analysis of
fluctuations about the saddle point in or near the dimer
state, as will be discussed in Section :[Y: At higher orders
in 1/N, the b$ can indeed hop through the entire lattice;
we expect that the lowest lying excitation will be a .S = 1
spin trlpletf" (for SU(2)), consisting of a confined pair of
the b$* bosons.

2. (m,7) SRO

This state is obtained ‘py quantum-disordering the Néel
state of Subsection T A 1;, and the expectation values of
Q;; have the same structure as those in Subsection TI_A_L
As has been discussed in some detail in Refs :14- :15 the
quantum fluctuations in this phase are described by a
compact U(1) gauge theory. Such a theory is always
confining, and thus the b bosons again bind to yield
a S = 1 quasiparticle above a spin gap. There is also
an interesting structure in the spin-singlet sector: this
is considered in Subsection 'III: where it is demonstrated
that at finite IV this phase has “plaquette” order.

3. (m,q) and (q, ™) SRO

In this phase (Q;;) are non-zero on the diagonal, hori-
zontal and vertical links, like the helical (7, ¢) LRO phase
of Subsection :II:@:Z Again there are two gauge non-
equivalent configurations, corresponding to the choices
Ry = Ry with Q; = Q < P, = P [the (m,q) phase],
and Ry = —Rp with @; = @ > P, = P [the (q,m)
phase]. Thus all of the horizontal @; fields acquire the
same expectation value, but unlike in the helical LRO
phase, this value differs slightly from that of the vertical
P; fields; the difference is only on the order of a part in
ten thousand. The state is a spin-singlet and there is a
gap to all spin excitations. Nevertheless, the symmetry of
90° rotations between the vertical and horizontal direc-
tions is broken—this would now be apparent in various
spin-singlet observables like the bond exchange energies
or the bond-charge densities. This phase may therefore
be viewed as a spin-singlet “nematic” as only rotational
symmetry is broken. The choice of a vertical or horizon-
tal spatial polarization in the nematic order leads to a
two-fold degeneracy in,the graynd-state. The state also
has “topological” order2d24-2192324 and this would lead
to an additional four-fold degeneracy in a torus geome-
try. Unlike the commensurate SRO phases, the spinons
are deconfined. We describe the deconfinement transi-
tion below in Section IY: The spinon dispersion has
its minima at momentum (7/2,q/2) or (¢/2,7/2). Al-
though this phase is realized only for S < 1/2 in the



large N limit, it seems possible that in the physical limit
N =1 it could extend up to S = 1/2 for a narrow range
of Jy/Ji. Similar behavior was found in a study of the
Sp(2N) Heisenberg antiferromagnet on the anisotropic
triangular latticel3. It would interesting to search for
this phase using numerical methods.

We conclude this section by briefly comparing our re-
sults to other published calculations. For S = 1/2 we
find that the transition between Néel and Helical LRO
phases is continuous, occurring at Jo/J; ~ 1. 0?, close
to the value of 1.1 found by Albrecht and Mila2, who
also report a continuous transition. Also in agreement
with Albrecht and Mila, we find that the transition be-
tween the Helical LRO and Dimer SRO phase is first
order, but oceyrs at Jp/J1 ~ 2.7 instead of 1.65. Koga
and Kawakami? employed a series expansion to find, for
S = 1/2, a plaquette phase which intervenes between
the Néel and dimer phases. As shown below, the (, )
SRO phase acquires plaquette order at finite N, but as
can be seen in Fig 3, at large N this phase only oc-
curs for S < 1/5. If finite N fluctuations push the phase
boundary up to S = 1/2 then the following sequence of
phases would occur as Jo/(J1 + J2) increases from 0 to
1: Néel, Plaquette (m,7) SRO, (m,¢q) SRO, and finally
Dimer SRO.

III. PLAQUETTE ORDER IN THE
COMMENSURATE PARAMAGNET

This section will discuss the fate of the spin singlet sec-
tor upon including fluctuations about the mean-field in
the (m,m) SRO state. The results below are a straight-
forward generalization of those obtained in Refs :_l@,:_l@l for
the square lattice antiferromagnet. We will only consider
the case where 2SN is an odd integer (for the physical
SU(2) case, this means that S is half an odd integer);
the generalization to other values of S follows as in ear-
lier work.

In the present large N approach, regular perturba-
tive corrections order by order in 1/N do not qualita-
tively modify the nature of the mean-field ground state.
However, singular effects do appeart®L3 upon consider-
ing the consequences of ‘hedgehog’ like instanton tunnel-
ing events and their Berry phases. Such a calculation is
technically involved, and a somewhat more transparent
discussion of essentially the same physics emerges from
studying the “quantum dimer” model2d (see Appendix
A of Ref :_1-5 for a discussion of the equivalence between
the instanton physics of the large N expansion and dual
representations of the quantum dimer model). Here we
shall follow the treatment of Ref 24

The quantum dimer model represents the Hilbert space
of low-lying singlet excitations by assuming that it can
be mapped onto states represented by a near-neighbor
singlet bond (‘dimers’) covering of the lattice. In the
present (m, ) SRO phase, we need only take dimers con-
necting nearest neighbor sites on horizontal and vertical

links. The dimers along the diagonal links are assumed
to occur only rarely in this phase: they can therefore
be integrated out, and serve mainly to modify the effec-
tive Hamiltonian in the space of horizontal and vertical
dimers. Indeed, the most important consequence of this
procedure is apparent from a glance at Fig :_]:: the diago-
nal dimers divide the plaquettes of the square lattice into
two classes, those with and without diagonal links across
them, and we expect dimer resonance terms around these
plaquettes to have distinct matrix elements (see Fig Zl:)
This distinction will be the only difference from earlier
analysest419, and we will show that it is sufficient to lead
to plaquette order in the (m, 7) SRO phase.

Our results emerge from an analysis of the. theight’
representation of the quantum dimer modelt%232¢2423
There is a rigorous, one-to-one mapping between the set
of coverings of the square lattice with nearest-neighbor
horizontal and vertical dimers, and the configurations
of an interface of heights, h,, defined on the sites, a,
of the dual square lattice (we identify two interfaces is
equivalent if they are related by a uniform translation
ha — hg + p, where p is any integer). The values of h,
are restricted to

ha = Ng + Ca (31)

where n, is a integer which fluctuates from site to site,
and (, is a fixed fractional offset which takes the values
0,1/4,1/2,3/4 on four dual sublattices, X,Y,Z, W, as
shown in Fig I_i' We further restrict the h, to satisfy
|he — hy| < 1 for any pair of nearest-neighbor sites a, b.
We can now specify the connection between the height
model and the dimer coverings. Examine the value of
|he—hp| for every nearest neighbor pair, and if |hg —hy| >
1/2, place a dimer on link shared by the plaquettes of
the direct lattice around a and b. It is not difficult to
see that a consequence of our choice of the (, offsets is
that dimers so obtained will form a close-packed covering
of the lattice. Examples of the relationship between the
height values and dimer coverings are shown in Fig 2_1:

We can now use general symmetry considerations to
write down an effective action for the height degrees of
freedom. As is standard in theories of interface mod-
els, we promote discrete heights h,, in (S:]:), to continu-
ous real variables x, by the Poisson summation formula,
and “soften” the constraints to periodic cosine potentials
which have minima at the values x, = h, which obey
(3.1 In this manner we obtain the action

S, = /dT [g > e —x0)°

(ab)

+z{ O xa)? yacos@w(xa—ca))}], (3.2)

where the sum over (ab) extends over nearest neighbor
sites, and K is the stiffness towards spatial fluctuations of
the interface height. The corresponding stiffness towards



time-dependent fluctuations is K, and, for simplicity,
we have taken its value a independent. The symmetry
of the lattice requires that the strength of the periodic
potential take two possible values, y, = y1 or y, = yo de-
pending upon whether the plaquette a has a diagonal Js
link across it or not. This is the sole distinction from the
analysis of the square lattice antiferromagnet in Ref :_1-5,
which had y1 = yo.

The fundamental property of interface models in 2+1
dimensions, like Sy, is that they are always in a smooth
phase. This means that the symmetry of height trans-
lations is always broken, and (x,) = (h,) has some def-
inite value across the entire system. As was argued in
Refs :14:,:15_:, any such definite value necessarily breaks the
lattice symmetry of the underlying antiferromagnet, and
will lead here to plaquette order.

With the assumption of a smooth interface, the opti-
mal interface configurations can be determine by a simple
minimization of S, by a set of time-independent values
of x,. We allow for distinct expectation values, xw, xx,
Xy, and xz on the four dual sublattices. Then the prob-
lem reduces to the minimization of the following energy
as a function of these four real variables:

By = K[ (ox = xw)? + (ow = xv)?

+ (xy —x2)° + (xz — xx)*
— 41 [cos(2mxw) — cos(2mxy )]
— Yo [sin(2my x) — sin(2mx z)] (3.3)

This minimization is a straightforward, but somewhat
tedious, computation. The present analysis is valid only
for small ¥, y2, and so we analytically determine the
minima in power series in y; 2. We define

Xw = X1+ X2+ X3

XX = X1 — X2 + X3
Xy = X1+ X2 — X3
Xz =X1— X2 — X3 (3.4)
We find that at the saddle points of E,,
Wt +5) . 4
Xo = e sin(4mx1) + O(y] 2)
Y1 .
X3 = _ﬁ Sln(27TX1) + O(yi’ 2)
Y
X4 = ﬁ 2 cos(2mx1) + Oy 2)- (3.5)

The average interface height, x1, is determined by the

minimization of
E, = Ey+ Acos(4mx1) + Bcos(8mx1) + ...,  (3.6)

where Fj is an uninteresting constant independent of x1,

P €l I il 1))
2K 6K3

m%(Tyi + 6yiys + Tys)
96K3 ’

B =

and all omitted terms are of order yf o or higher (in ob-
taining the results in (B 7) we had to include terms in
(3.5) which are one order higher than those shown). Note
that the square lattice antiferromagnet, with y; = yo, has
A=0.

We now have to minimize (3.6) to determine y;. Then
from (‘g;_a) we know x2 3.4, and hence the configuration
of the interface heights. Then, from the connection be-
tween |h, — hy| and the corresponding dimer occupation
numbers, we can determine the pattern of the distribu-
tion probabilities of the spin singlet bonds in the original
antiferromagnet. It is a simple exercise to determine the
minima of (3.6) for different values of A and B; the re-
sulting phase diagram is shown in Fig E_i', and we now list
the various minima and the associated ground states of
the antiferromagnet.

(i) A > 0, B < A/4: There are degenerate minima
at x1 = 1/4,3/4. The system spontaneously breaks a
translational symmetry by choosing one of these minima.
With the mappings above, it is easy to see that these are
the plaquette states, one of which is depicted in Fig 6.
(i) A <0, B < —A/4: Now the two equivalent min-
ima are x; = 0,1/2. These also correspond to plaquette
states as above, but the chosen plaquettes are now around
half of those containing diagonal links (see Fig ).

(4ii) The remaining values of A and B have four degener-
ate minima at x1 = 1/4£49,3/4+ 9, where 0 < ¥ < 1/4
varies continuously as a function of A/B. These states
have spin-Peierls order of the type shown in Fig '(_)‘.: the
links are divided into four columnar sets, with each set
having a different value of (S;-S;) on its links. This state
interpolates between the plaquette state in (i) as 9 — 0
and that in (#) as 9 — 1/4.

The present analysis is for small y;, and so, from (8.7)
we should assume that B < |A|. Furthermore the pres-
ence of the frustrating Js interaction on half the plaque-
ttes means that the hedgehog tunneling events are more
likely to be centered on these plaquettes. Using the map-
ping of such events to the model (3.2), we expect that
Y1 > yo. From (3.7) we therefore conclude that the most
likely possibility for the ground state is that in (¢) above.
The same state has also been considered in Ref 8

We conclude this section with a few comments on the
(m, ) SRO phase of the antiferromagnet with full square
lattice symmetry, in which there is a diagonal J ex-
change between every pair of next-nearest-neighbor sitgs.
Recent numerical work on such an antiferromagnetﬁ??’@%
has found evidence for spin-Peierls ordering with the
same spatial structure as in (4ii) above for the Shastry-
Sutherland antiferromagnet. However, we noted earlier
that the square lattice symmetry implies that A = 0: for
this value, 9 = 1/8, and the spin-Peierls state of (iii) has
a larger symmetry (two of the four sets of columnar links
are equal to each other), and becomes equivalent to the
ordering discussed in Refs 241 25 To obtain ¢ # 1/8, and
so a ground state with the symmetry of that in Flg 6
we need to add to E a higher order term C cos(167y):
then there can be an eight—fold degenerate ground state,



with ¢ and 1/4 — 9 equivalent to each other. This is the
state that appears to have been found in Refs }27 :28

Note also that for the square lattice case, the B < 0,
A = 0 solution has the four plaquette states degenerate
with each other24

IV. DECONFINEMENT TRANSITION OF THE
DIMER PHASE

The deconfined, “spin-liquid”, (w,q) SRO phase in
Fig 313 flanked on both sides by confining paramagnetic
phases, the plaquette and the dimer phases.

As we indicated Section §, the deconfinement-
confinement quantum phase transition from the (,q)
SRO phase to the plaquette phase can be described in
a theory essentially identical to that considered preyi-
ously for frustrated square lattice antiferromagnets®}
At the mean-field level, the transition is signaled by the
onset of non-zero expectation values of ();; on the diago-
nal links: we will denote these diagonal @;; as Qd Upon

considering fluctuations, we find that the Qw constitute
a charge 2 Higgs field in a compact U(1) gauge theory,
and the deconfinmgpt=capfinement transition is that in a
7 gauge theoryiqﬁ'l]:vﬂﬂ?lgt

This section will consider the second deconfinement-
confinement transition in Fig J, between the dimer and
(7, ¢) SRO phases in more detail. We will see that this is
also described by a Zs> gauge theory, and the emergence of
the Z5 gauge symmetry can be described in a somewhat
more transparent manner.

As noted in Section :lf_]-{l.', the dimer phase is char-
acterized by non-zero expectation values of the diagonal
Qd links. These links are all decoupled from each other,
and this leads to a simple, local structure in the effec-
tive action for the fluctuations. The transition to the
deconfined phase is now signaled by the onset of non-
zero expectation values of the Q);; on the horizontal and
vertical links, and we will denote these by w and Q7
respectively. Near the phase boundary, we need only con-
sider the structure of the effective action as a functional
of the Q?jv after all other degrees of freedom have been
integrated out.

The simplest terms in the effective action arise from the
on-site propagation of the b$* on the site ¢ in imaginary

time. Integrating out the b$ in powers of the Qz a he
lowest order terms have the form
/ dr [cl Z |Q
(i)
+@§mememmnh}+~} (4.1)
[m]

where ¢, co are constants, the first sum is over nearest
neighbor links, and the second sum is over plaquettes,
with the sites labeled as in Fig -7 A crucial property

of & is that all terms are invariant under a local U(1)
gauge transformation

QL - Qltorsen, 12)
where the phase ¢; can take arbitrary distinct values on
the sites 1.

We have so far not made use of the fact that the
nonzero value of (Qf J) allows the b5* bosons to hop across
a single diagonal link. Such hopping processes will induce
a large number of additional terms between the Q?fv. We
will now write down the structure of all such terms which
appear at fourth order in the Q?]?v. It is convenient to
group these terms into sets associated with links emanat-
ing from a given plaquette which does not have a diago-
nal dimer across it: one such plaquette is that with the
sites 1,2,3,4 in Fig ::(:, and we now write down all four-
link terms in which every link has at least one site on the
central plaquette. It is not difficult to see that all other
four-link terms can be obtained by a simple translation
of these terms to other plaquettes. The terms are

S Z/dT [CB{leQ 6Q32 43 — 6Q37Q43 41

+Qg7Q§4Q41 12 Q84Q51Q12 32 tcc }
+C4{QQ1Q Q13 Q1 — Q3:Q%Q%Q1,
+Q5,Q8,Ql5 Q% — Q4,Q5 Q41 Qlf; + c.c. }
—05{Q51Q 5 Qls + Q5sQ45Q8Q4 + c.c. }

o] QBQ5eQkQks + e} |. (4.3)

Clearly, (#.3) is not invariant under (4.2). However, a

residual Z> gauge symmetry does survive. We see that

(4.1, 4.3), and all other allowed terms, are invariant under
h,

Qly — (1.4)
where 7; = £1 performs the gauge transformation. How-
ever, it is not possible to choose the 7; independently on
every site: it is easy to see that we need the additional
constraint

QU nin;

1; = 1; whenever 7 and j

are separated by a diagonal link. (4.5)
So the Zs gauge degree of freedom is halved from that
present on the original square lattice.

To place the Z; gauge theory in a more conventional
form, it is useful to introduce a slightly different param-
eterization of the degrees of freedom. First, we neglect
all amplitude and phase fluctuations and replace all the
Q;; by discrete Ising variables taken only the values +1.
Then we choose to represent all the ij as Ising gauge



fields, o, while all the Q}; are written as products of o
and a second Ising spin field, p; thus:

Q" ~o

QY ~op. (4.6)

This is shown a more explicitly in Fig :; Notice that each
pair of horizontal and vertical links that form a triangle
with a single diagonal link share the same Ising gauge
field . This choice is a consequence of the constraint
(1.5)—as a result, all the p fields are invariant under
the gauge transformation generated by the n;, while the
o’s transform like conventional Ising gauge fields. This
is also evident from the structure of the effective action
obtained by substituting the parameterization in (¢4.4)
and Fig i into the effective action in (A1 43); for the
terms displayed in (.1}, #.3) we obtain:

83 = /dT [5201020304M2M4

+5301020304{M1M2 — p1ftg + p3py — M3M2}
+54{M1M4 — pap2 + pops — M3M4}

—5501020304{1 + M1M2M3M4}

+550'10'20'30'4M1M3 . (47)

The terms involving the o; appear to have the plaque-
tte form associated with Ising gauge fields. The spatial
structure of these gauge interactions is made clearer by
the transformation in Fig 'é_g Here, we have collapsed
pairs of sites connected by the diagonal links into single
sites—we now see that the o; can viewed as residing on
the links of a square lattice which is tilted by 45° from
the original lattice, and their gauge interactions have the
usual form around elementary plaquettes.

The p; constitute a separate global Ising degree of free-
dom associated with the breaking of the symmetry of
90° spatial rotations between the horizontal and vertical
directions. In the mean-field theory of the deconfined
phase, the state with p; = 1 corresponds to the state
with dominant spin correlations at the wavevector (7, q)
(say). The degenerate partner state with spin correla-
tions at (g, ) is obtained by the state j; = (—1)%, where
(iz,1y) are the Cartesian co-ordinates of the site 1.

So the action Sz describes a Z; gauge theory (o) cou-
pled (rather intricately) to an Ising spin field (p); the
w field does not carry a non-zero charge under the Zo
gauge transformation. The Zs gauge theory can undergo
a confinement-deconfinement transition (which is related
by a duality transformation to the magnetic transition
in an Ising model in three dimensions), corresponding to
the liberation of spinons upon moving out of the dimer
phase. In a different sector, the ordering of the u degrees
of freedom leads to the appearance of nematic order, and

the breaking of the symmetry of 90° spatial rotations.
In the mean-field theory, these two transitions occur at
the same point i.e. the deconfinement transition is also
the point where the spatial rotation symmetry is broken.
More generally, the interplay between these two poten-
tially distinct transitions can be addressed by an analysis
of fluctuations using the action S3. It does appear pos-
sible that the two transitions are not simultaneous, and
that there can be a deconfined phase without any broken
spatial symmetries; moreover, if there is a simultaneous
transition in the two sectors, it is likely to be first or-
der. A more definitive conclusion on these issues must
await a complete study of the coupled Ising gauge/Ising
spin theory defined by &3. We note that these issues con-
cerning the transition from the confined dimer phase to
the deconfined helical SRO phase are samewhat different
from earlier deconfinement transitions!? because here the
dimer phase does not break any lattice symmetries.

V. CONCLUSIONS

The Mott insulator SrCuz(BOs3)s is perhaps the only
example of a spin gap paramagnet on a strongly frus-
trated two-dimensional lattice (another example of a two-
dimensional paramagnet is CaV4QOg, but its spin gap is
realized by dilution and not frustration). To date, it ap-
pears that the spin gap is realized in a simple decoupled
dimer ground state discovered originally by Shastry and
Sutherland®. Here, we undertook a more detailed study
of the parameter space of this antiferromagnet, and found
that other paramagnetic spin gap states are also possi-
ble. One of these was the plaquette state®, which appears
in a region of weaker frustration and commensurate spin
correlations. The other was a more exotic state with
“topological order”, deconfined S = 1/2 excitations, and
helical spin correlations. The latter state was found to be
contiguous to the dimer state, and so not too far from the
physically relevant regime: it appears that SrCus(BOs3)s2
is quite close to the boundary of stability of the dimer
phase.

Our results suggest exciting possibilities for materials
obtained by doping SrCus(BO3)2 with mobile carriers. It
is expected that the helical state will be more amenable
to the motion of charge carriers than the dimer state,
and so doping may well drive the system into a topologi-
cally ordered state. Such a state is a prime candidate for
superconductivity with the exotic properties associated
with the proximity of a Mott insulator with deconfined
spinons: these include the flux-trapping effect of Senthil
and Fisher2, and a regime of stable he/e vorticesB%84,
An experimental effort to dope SrCus(BOs3)2 (or related
compounds) therefore appears worthwhile.
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FIG. 1. The Shastry-Sutherland lattice. The exchange Ji
acts between sites separated by the horizontal and vertical
links, which the exchange J2 acts across the diagonal links.
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FIG. 2. The four sites of the unit cell (labeled A, B, C and
D), and the 10 link variables Q;;.
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FIG. 3. Large N phase_diagram of the Sp(N) Shas-
try-Sutherland model, Eq. -1_]:, as a function of J2/(J1 + J2)
and 1/S. The five phases are described in Section :[]: The
LRO phases break spin-rotation symmetry: the spin order is
collinear and commensurate in the (7, w) LRO phase, and he-
lical and incommensurate in the (7, ¢) LRO phase. The SRO
phases preserve spin rotation invariance. In the (m,7) SRO
only the horizontal and vertical @);; are non-zero in the large
N theory—fluctuations lead to broken translational symmetry
in one of the states shown in Fig ﬁ The dimer phase has
only the diagonal @);; non-zero in the large N theory. The
(m,q) SRO phase has all the Q;; non-zero: this phase has
topological order and deconfined spinons.
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FIG. 4. Three states of the Hilbert space of the quantum
dimer model. There are off-diagonal matrix elements in the
effective Hamiltonian which connect state (a) to state (b),
and state (a) to state (c), by a resonance between pairs of
horizontal and vertical dimers around a plaquette. The latter
matrix element differs from the former because only the lat-
ter has a diagonal link across the resonating plaquette. Also
hown are the corresponding values of the heights, hq, on the
‘'sites of the dual lattice.
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FIG. 5. The four dual sublattices upon which the height
offsets take the values (w = 0, (x = 1/4, ¢y = 1/2, and
Cz = 3/4.
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FIG. 6. Phase diagram of (3.6) as a function of the pa-
rameters A and B; this ‘model describes fluctuations in the
(m, ) SRO phase of Fig 3. The thick line is a first order tran-
sition, while the thin lines are second order. The plaquette
and spin-Peierls states are shown, with the different line-styles
representing distinct values of (S; - S;) across the links.
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FIG. 7. A section of the Shastry-Sutherland lattice. We

have labeled sites around the central plaquette to enable the

discussion in Section 1\[: of the various terms in the Z> gauge

theory of the transition from the dimer state to the (, q) SRO
phase with spinon deconfinement.
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FIG. 8. A deformation of the Shastry-Sutherland lattice
which exposes the structure of the Zs gauge theory. Pairs
of sites across a diagonal bond have been compressed into
a single site. Four of the sites carry pairs of sites labels,
corresponding to the original site numbers in Fig f_ﬂ The Z,
Ising gauge fields on some of the links are indicated, with a
notation corresponding to the degrees of freedom in Fig j



