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We compare the neutron measurements of Kim et al. (cond-mat/0012239) on two-dimensional,
S = 1/2 antiferromagnets with the continuum quasiclassical theory of S. Sachdev and O.A. Starykh
(Nature, 405, 322 (2000)). The damping of the lowest energy spin excitations is characterized by
a dimensionless number whose temperature dependence was predicted to be determined entirely by
that of the uniform spin susceptibility. Theory and experiment are consistent with each other.

Kim et al. [1] have recently provided illuminating neu-
tron scattering measurements of the damping of the low-
est energy spin excitations in S = 1/2, square lattice
antiferromagnets. They characterized this damping by
the temperature (T ) dependence of a dimensionless num-
ber, Rω. (Related measurements, at higher energies, are
those of [2].) Here we will use an existing quasiclassical
dynamic theory [3] to relate Rω(T ) to a thermodynamic
observable, χu(T ), the uniform spin susceptibility, and
show that this provides a unified understanding of the
experiments of Kim et al., and earlier studies of NMR
relaxation rates [4].

Detailed quantitative predictions have been made for
χu(T ) (and other static observables) for antiferromagnets
with a magnetically ordered ground states with a spin
stiffness ρs [5,6] . When the antiferromagnet is also near
a quantum critical point at which ρs vanishes, then these
observables become universal functions of T/ρs at all T
below J (a near-neighbor exchange interactions), while
at higher T there is simple decoupled spin behavior. In
particular, χu obeys [6] (kB = h̄ = 1)

χu(T ) = (T/c2)Ω(T/ρs), (1)

where c is the spin-wave velocity, and Ω(x) is a universal
function which crosses over from the ‘renormalized clas-
sical’ (RC) regime Ω(x � 1) = 2/(3x) + 1/(3π) + . . .,
to the ‘quantum critical’ (QC) regime Ω(∞) ≈ 0.27 [6].
Such results agree well with Monte Carlo simulations on
antiferromagnets known to be near a quantum critical
point [7].

For the square lattice antiferromagnet, RC behavior is
well established as T → 0. However, somewhat surpris-
ingly, it was found that χu(T ) was quite close to the QC
limit above for T > 0.3J , and in clear disagreement with
the T dependence predicted by the RC limit, suggesting
a crossover from RC to QC behavior even in this un-
frustrated, isotropic, and undoped system [6]; the corre-
sponding behavior was not seen for the correlation length,
and a theoretical rationale was offered for this [6]. Subse-
quent precision Monte Carlo studies were consistent with

these observations [8].
It is clearly of interest to obtain quantitative predic-

tions of the RC to QC crossover in dynamic properties.
However, accurate predictions of damping rates in the
QC regime are quite difficult to obtain. An expansion in
ε = 3− d (d is the spatial dimensionality) was developed
in [9], but the accuracy of the leading order term in ε
is not known. In [3], physical arguments were used to
motivate a simple continuum quasiclassical model which
had the advantages of being expressed directly in d = 2,
and of also describing the crossover into the RC regime.
The scaling arguments of [3] predict that Rω(T ) obeys

Rω(T ) = Aω
√
T/(c2χu(T )), (2)

where Aω is a dimensionless number. So in [3], the
crossover in the damping is determined entirely by that in
χu(T ). Upon applying a self-consistent, one-loop approx-
imation to the theory of [3], we obtain integral equations
closely related to those of Grempel [10]; from his numer-
ical solution of these equations, we deduce Aω = 0.31.

In the T → 0, RC limit, (2,1) predict that Rω(T ) =
0.38

√
T/ρs, which is precisely the result of [5,10]. In the

QC regime, it is a very general prediction that Rω(T ) is
a T -independent constant, as appears to be observed at
higher T in [1]; from (2,1) we obtain that Rω(T ) ≈ 0.60,
a prediction which is consistent with the observations of
[1]. It would be interesting to use the measured values of
χu(T ) to test (2) over the entire temperature range.

Similar comments apply to the computation of NMR
relaxation rates in [4]. These papers use a computation
very similar to that of Grempel [10], but with a lattice
cutoff, and include the full T dependence of χu(T ). As
we noted earlier, the latter is not described by the RC
behavior but displays a RC to QC crossover; in the model
of [3], the crossover in χu(T ) is sufficient to describe the
crossover in the dynamics into the QC regime. The agree-
ment of the results in [4] with experimental observations
is therefore consistent with our discussion here.
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