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S = 1/2 antiferromagnets with the continuum quasiclassical theory of S. Sachdev and O.A. Starykh

(Nature, 405, 322 (2000)).

The damping of the lowest energy spin excitations is characterized by

a dimensionless number whose temperature dependence was predicted to be determined entirely by
that of the uniform spin susceptibility. Theory and experiment are consistent with each other.

Kim et al. [il] have recently provided illuminating neu-
tron scattering measurements of the damping of the low-
est energy spin excitations in S = 1/2, square lattice
antiferromagnets. They characterized this damping by
the temperature (T") dependence of a dimensionless num-
ber, R,. (Related measurements, at higher energies, are
those of [2].) Here we will use an existing quasiclassical
dynamic theory [B] to relate R, (T) to a thermodynamic
observable, x,(T), the uniform spin susceptibility, and
show that this provides a unified understanding of the
experiments of Kim et al., and earlier studies of NMR
relaxation rates [4].

Detailed quantitative predictions have been made for
Xu(T') (and other static observables) for antiferromagnets
with a magnetically ordered ground states with a spin
stiffness p, [B,6] . When the antiferromagnet is also near
a quantum critical point at which ps vanishes, then these
observables become universal functions of T'/p, at all T
below J (a near-neighbor exchange interactions), while
at higher T there is simple decoupled spin behavior. In
particular, y, obeys [B] (kg =h = 1)

Xu(T) = (T/)QUT/ ps), (1)

where c is the spin-wave velocity, and Q(x) is a universal
function which crosses over from the ‘renormalized clas-
sical’ (RC) regime Q(z < 1) = 2/(3z) +1/(37) + ...,
to the ‘quantum critical’ (QC) regime €(c0) ~ 0.27 [6.
Such results agree well with Monte Carlo simulations on
antiferromagnets known to be near a quantum critical
point [i].

For the square lattice antiferromagnet, RC behavior is
well established as T' — 0. However, somewhat surpris-
ingly, it was found that x,,(7') was quite close to the QC
limit above for T' > 0.3J, and in clear disagreement with
the T dependence predicted by the RC limit, suggesting
a crossover from RC to QC behavior even in this un-
frustrated, isotropic, and undoped system ['ﬁ], the corre-
sponding behavior was not seen for the correlation length,
and a theoretical rationale was offered for this [6]. Subse-
quent precision Monte Carlo studies were consistent with

these observations [d].

It is clearly of interest to obtain quantitative predic-
tions of the RC to QC crossover in dynamic properties.
However, accurate predictions of damping rates in the
QC regime are quite difficult to obtain. An expansion in
e = 3 —d (d is the spatial dimensionality) was developed
in [i_):], but the accuracy of the leading order term in e
is not known. In [B:], physical arguments were used to
motivate a simple continuum quasiclassical model which
had the advantages of being expressed directly in d = 2,
and of also describing the crossover into the RC regime.
The scaling arguments of [§] predict that R, (T') obeys

Ry(T) = Au/T/(2xu(T)), (2)
where A, is a dimensionless number. So in [3], the
crossover in the damping is determined entirely by that in
Xu(T'). Upon applying a self-consistent, one-loop approx-
imation to the theory of @, we obtain integral equations
closely related to those of Grempel [i(j], from his numer-
ical solution of these equations, we deduce A, = 0.31.

In the T — 0, RC limit, (%,0)) predict that R, (T) =
0.384/T'/ps, which is precisely the result of [E,:_l-(_)ﬂ In the
QC regime, it is a very general prediction that R, (T) is
a T-independent constant, as appears to be observed at
higher T in [i]; from (2.l) we obtain that R.,(T) =~ 0.60,
a prediction which is consistent with the observations of
). Tt would be interesting to use the measured values of
xu(T) to test () over the entire temperature range.

Similar comments apply to the computation of NMR
relaxation rates in [2_1.'] These papers use a computation
very similar to that of Grempel [E-(_T], but with a lattice
cutoff, and include the full T dependence of x, (7). As
we noted earlier, the latter is not described by the RC
behavior but displays a RC to QC crossover; in the model
of [8], the crossover in x,(T) is sufficient to describe the
crossover in the dynamics into the QC regime. The agree-
ment of the results in [4] with experimental observations
is therefore consistent with our discussion here.
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