## Static hole in a critical antiferromagnet: field-theoretic renormalization group

Subir Sachdev $^{\dagger}$ 

Department of Physics, Yale University P.O. Box 208120, New Haven, CT 06520-8120, USA

## Abstract

We consider the quantum field theory of a single, immobile, spin S hole coupled to a twodimensional antiferromagnet at a bulk quantum critical point between phases with and without magnetic long-range order. We present an alternative derivation of its two-loop beta function; the results agree completely with earlier work (M. Vojta *et al*, Phys. Rev. B **61**, 15152 (2000)), and also determine a new anomalous dimension of the hole creation operator.

Keywords: Kondo spin, critical antiferromagnet, field theory (subject index); high temperature superconductor (materials index).

Correspondence: Subir Sachdev, Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA. Fax: 1-203-432-6175. Email: subir.sachdev@yale.edu

PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY, OC-TOBER 14-16, 2000, TOKYO, JAPAN. TO APPEAR IN PHYSICA C. PACS numbers: 71.27.+a, 75.20.Hr, 75.10.Jm Recent papers [1, 2] have introduced the following model Hamiltonian for a single nonmagnetic (Zn or Li) impurity in a two-dimensional *d*-wave superconductor or spin-gap insulator (see [3] for a review and experimental motivation):

$$\mathcal{H} = \mathcal{H}_{\phi} - \gamma_0 \hat{S}_{\alpha} \phi_{\alpha}(x=0)$$
  
$$\mathcal{H}_{\phi} = \int d^d x \left[ \frac{\pi_{\alpha}^2 + c^2 (\nabla \phi_{\alpha})^2 + s \phi_{\alpha}^2}{2} + \frac{g_0}{4!} (\phi_{\alpha}^2)^2 \right]. \tag{1}$$

We have written the Hamiltonian in d spatial dimensions, and  $\hat{S}_{\alpha}$  ( $\alpha = 1, 2, 3$ ) are spin S operators of a magnetic moment that is postulated to be present near the impurity (the case of physical interest has S = 1/2); these operators obey the SU(2) commutation relations

$$[\hat{S}_{\alpha}, \hat{S}_{\beta}] = i\epsilon_{\alpha\beta\gamma}\hat{S}_{\gamma} \tag{2}$$

and  $\hat{S}_{\alpha}\hat{S}_{\alpha} = S(S+1)$ . The field  $\phi_{\alpha}(x,t)$  represents the local orientation of the antiferromagnetic order parameter at spatial position x and time t; its canonically conjugate momentum is  $\pi_{\alpha}(x,t)$ , and hence

$$[\phi_{\alpha}(x,t),\pi_{\beta}(x',t)] = i\delta_{\alpha\beta}\delta^{d}(x-x')$$
(3)

This theory has a bulk quantum critical point at  $s = s_c$  between a phase with magnetic order ( $s < s_c$ ,  $\langle \phi_{\alpha} \rangle \neq 0$ ), and a symmetric phase with a spin gap ( $s > s_c$ ,  $\langle \phi_{\alpha} \rangle = 0$ ). We are interested in the spin correlations of  $\mathcal{H}$  for s close to  $s_c$ , and in the vicinity of the impurity at x = 0. As discussed in [1, 2], universal aspects of these correlations are associated with a renormalized continuum theory of  $\mathcal{H}$  defined in an expansion in  $\epsilon = 3 - d$ . This renormalization involves the familiar bulk renormalizations which are insensitive to the impurity degree of freedom

$$\phi_{\alpha} = \sqrt{Z}\phi_{R\alpha} \quad ; \quad g_0 = \frac{\mu^{\epsilon} Z_4}{Z^2 S_{d+1}}g \tag{4}$$

and new 'boundary' renormalizations associated with the impurity spin

$$\hat{S}_{\alpha} = \sqrt{Z'} \hat{S}_{R\alpha} \quad ; \quad \gamma_0 = \frac{\mu^{\epsilon/2} Z_{\gamma}}{\sqrt{ZZ'} \tilde{S}_{d+1}} \gamma.$$
(5)

Here  $\mu$  is a renormalization momentum scale (we set the velocity c = 1),  $S_d = 2/[\Gamma(d/2)(4\pi)^{d/2}]$ , and  $\tilde{S}_d = \Gamma(d/2 - 1)/[4\pi^{d/2}]$ . The renormalization constants  $Z, Z_4$  were computed long ago [4]; their values in the minimal subtraction scheme to order  $g^2$  are

$$Z = 1 - \frac{5g^2}{144\epsilon} \quad ; \quad Z_4 = 1 + \frac{11g}{6\epsilon} + \left(\frac{121}{36\epsilon^2} - \frac{37}{36\epsilon}\right)g^2. \tag{6}$$

The boundary renormalizations were computed to the same order in [1, 2]:

$$Z' = 1 - \frac{2\gamma^2}{\epsilon} + \frac{\gamma^4}{\epsilon} \quad ; \quad Z_{\gamma} = 1 + \frac{\pi^2 [S(S+1) - 1/3]}{6\epsilon} \gamma^2 g \tag{7}$$

This paper will rederive the above results by a new method which also yields a renormalization constant for the hole creation operator. Furthermore, the present approach, unlike that of [2], has the advantage of being formulated entirely in terms of perturbation expansion which has a Wick theorem, and can thus be presented in conventional time-ordered Feynman diagrams.

We will identify the spin  $\hat{S}_{\alpha}$  with that of a hole, with creation operator  $\psi_a^{\dagger}$ , that has been injected into the antiferromagnet. So

$$\hat{S}_{\alpha} = \psi_a^{\dagger} L_{ab}^{\alpha} \psi_b \tag{8}$$

where a, b take the 2S + 1 values  $-S, \ldots S$ , and the  $L^{\alpha}$  are the  $(2S + 1) \times (2S + 1)$  angular momentum matrices associated with the spin S representation. The hole operators obey the anticommutation relation

$$\psi_a^{\dagger}\psi_b + \psi_b\psi_a^{\dagger} = \delta_{ab} \tag{9}$$

So the remainder of this paper will consider the Hamiltonian

$$\mathcal{H}_{\psi} = \lambda \psi_a^{\dagger} \psi_a + \mathcal{H}_{\phi} - \gamma_0 \psi_a^{\dagger} L_{ab}^{\alpha} \psi_b \phi_{\alpha}(x=0) \tag{10}$$

We will only look at the Hilbert space with a single hole, and  $\lambda$ , the energy of this hole is an arbitrary positive number.

We now consider the renormalization of  $\mathcal{H}_{\psi}$ . The standard procedure suggests the parameterization

$$\psi_a = \sqrt{Z_h} \psi_{Ra} \quad ; \quad \gamma_0 = \frac{\mu^{\epsilon/2} \widetilde{Z}_{\gamma}}{Z_h \sqrt{Z \widetilde{S}_{d+1}}} \gamma.$$
(11)

It is important to note that despite the relation (8), the renormalization of the spin  $\hat{S}_{\alpha}$  is not the square of the renormalization of  $\psi_a$ ,  $Z' \neq Z_h^2$ ; bringing the two Fermi operators to the same spacetime point introduces a composite operator renormalization which invalidates such a relation. Instead, the relationship between the two renormalization schemes emerges by comparing the renormalization of  $\gamma_0$  in (5) and (11); consistency of these relations demands

$$Z_h^2 Z_\gamma^2 = \widetilde{Z}_\gamma^2 Z' \tag{12}$$

We will now compute  $Z_h$  and  $\tilde{Z}_{\gamma}$  by completely standard field theoretic methods, and verify that their values and (7) satisfy (12).

The Feynman diagrams for the renormalization of two-point  $\psi$  Green's function are shown in Fig 1. As an explicit example, we display the computation of the simplest one-loop graph in Fig 1a:

$$(1a) = \gamma_0^2 S(S+1) \int \frac{d^d k}{(2\pi)^d} \int \frac{d\omega'}{2\pi} \frac{1}{(\omega'^2+k^2)} \frac{1}{(-i(\omega+\omega')+\lambda)}$$
$$= \gamma_0^2 S(S+1) \frac{S_d}{2} \int_0^\infty \frac{k^{d-2} dk}{(-i\omega+k+\lambda)}$$
$$= A_\mu (-i\omega+\lambda) \gamma^2 S(S+1) \left[ -\frac{1}{\epsilon} + \aleph/2 + \mathcal{O}(\epsilon) \right],$$
(13)

where  $A_{\mu} \equiv \mu^{\epsilon}(-i\omega + \lambda)^{-\epsilon} \tilde{Z}_{\gamma}^2/(Z_h^2 Z)$ . In the last step, the integral was evaluated in dimensional regularization. The constant  $\aleph = -0.8455686701969...$  is a consequence of phase space factors and will eventually cancel out of our final results. The remaining diagrams can be evaluated in a very similar manner: the frequency integrals are performed first, followed by integrals over the radial momenta. The results for the two-loop diagrams in Fig 1 are

$$(1b) = A_{\mu}^{2}(-i\omega + \lambda)\gamma^{4}S^{2}(S+1)^{2} \left[\frac{1}{2\epsilon^{2}} + \frac{1-\aleph}{2\epsilon} + \mathcal{O}(\epsilon^{0})\right]$$
$$(1c) = A_{\mu}^{2}(-i\omega + \lambda)\gamma^{4}S(S+1)(S^{2} + S - 1) \left[-\frac{1}{\epsilon^{2}} + \frac{-1+2\aleph}{2\epsilon} + \mathcal{O}(\epsilon^{0})\right]$$
(14)

Turning to the renormalization of the vertex  $\gamma_0$ , the Feynman diagrams are shown in Fig 2. Evaluating these as above we obtain

$$(2a) = \gamma_0 A_\mu \gamma^2 (S^2 + S - 1) \left[ \frac{1}{\epsilon} - 1 - \aleph/2 + \mathcal{O}(\epsilon) \right]$$

$$(2b) = \gamma_0 A_{\mu}^2 \gamma^4 (S^2 + S - 1)^2 \left[ \frac{1}{2\epsilon^2} - \frac{3 + \aleph}{2\epsilon} + \mathcal{O}(\epsilon^0) \right]$$

$$(2c) = \gamma_0 A_{\mu}^2 \gamma^4 (S - 1)(S + 2)(S^2 + S - 1) \left[ \frac{1}{2\epsilon} + \mathcal{O}(\epsilon^0) \right]$$

$$(2d) = \gamma_0 A_{\mu}^2 \gamma^4 (S^2 + S - 1)^2 \left[ \frac{1}{\epsilon^2} - \frac{2 + \aleph}{2\epsilon} + \mathcal{O}(\epsilon^0) \right]$$

$$(2e) = \gamma_0 A_{\mu}^2 \gamma^4 S(S + 1)(S^2 + S - 1) \left[ -\frac{1}{\epsilon^2} + \frac{2 + \aleph}{2\epsilon} + \mathcal{O}(\epsilon^0) \right]$$

$$(2f) = -\gamma_0 \frac{A_{\mu}^2 Z_h^2 Z_4}{\tilde{Z}_{\gamma}^2 Z} \gamma^2 g(S^2 + S - 1/3) \left[ \frac{\pi^2}{6\epsilon} + \mathcal{O}(\epsilon^0) \right]$$
(15)

The two-loop expression for the boundary renormalization constants follows immediately from the results (13,14,15). Demanding cancellation of poles in  $\epsilon$  in the expressions for the renormalized vertex and  $\psi$  Green's function at external frequency  $-i\omega + \lambda = \mu$  we obtain

$$Z_{h} = 1 - \gamma^{2} \frac{S(S+1)}{\epsilon} + \gamma^{4} \left[ \frac{(S-1)S(S+1)(S+2)}{2\epsilon^{2}} + \frac{S(S+1)}{2\epsilon} \right]$$
$$\tilde{Z}_{\gamma} = 1 - \gamma^{2} \frac{(S^{2}+S-1)}{\epsilon} + \gamma^{4} \left[ \frac{(S^{2}+S-3)(S^{2}+S-1)}{2\epsilon^{2}} + \frac{(S^{2}+S-1)}{2\epsilon} \right] + g\gamma^{2} \frac{\pi^{2}(S^{2}+S-1/3)}{6\epsilon}$$
(16)

It can be checked that (16) and (7) satisfy (12).

The validity of (12) implies that the beta function for the coupling  $\gamma$  is the same as that in [2]. Using either (5,6,7) or (11,6,16) we obtain

$$\beta(\gamma) = -\frac{\epsilon\gamma}{2} + \gamma^3 - \gamma^5 + \frac{5g^2\gamma}{144} + \frac{g\gamma^3\pi^2}{3}(S^2 + S - 1/3).$$
(17)

The anomalous dimension of the  $\psi_a$  field at the quantum critical point also follows from (16)

$$\eta_h = \beta(\gamma) \frac{d \ln Z_h}{d\gamma} = S(S+1)(\gamma^2 - \gamma^4), \tag{18}$$

while, as in [2], the anomalous dimension of the spin field,  $\hat{S}_{\alpha}$ , follows from (5,7):

$$\eta' = 2(\gamma^2 - \gamma^4). \tag{19}$$

For completeness we also note the beta function for the coupling g which follows from (6)

$$\beta(g) = -\epsilon g + \frac{11g^2}{6} - \frac{23g^3}{12}.$$
(20)

The stable fixed point of the beta functions (17,20) has  $g \neq 0$  and  $\gamma \neq 0$  [2]. Evaluating (18) at the fixed point of the beta functions [2], we obtain

$$\eta_h = S(S+1) \left[ \frac{\epsilon}{2} - \left( \frac{5}{484} + \frac{\pi^2 (S^2 + S - 1/3)}{11} \right) \epsilon^2 + \mathcal{O}(\epsilon^3) \right]$$
(21)

 $(\eta' = 2\eta_h/[S(S+1)])$  at this order). This anomalous dimension implies that the Green's function  $G = \langle \psi_a \psi_a^{\dagger} \rangle$  obeys

$$G(\omega) \sim (\lambda - \omega)^{-1 + \eta_h}.$$
(22)

The equations (16,18,21) are the main new results of this paper. Unfortunately, the order  $\epsilon^2$  corrections in (21) are rather large: this suggests that truncating the asymptotic series for  $\eta_h$  at order  $\epsilon$  probably gives the most reasonable estimate for its numerical value.

There is also an unstable fixed point at which the bulk interactions vanish (g = 0). As shown in [2],  $\eta' = \epsilon$  exactly at this fixed point, and here we find that  $\eta_h = S(S+1)\epsilon/2 + \mathcal{O}(\epsilon^3)$ . There appears to be no general reason for the higher order terms in  $\eta_h$  to vanish. The g = 0fixed point can also be studied in a large N theory [2], and the  $N = \infty$  results are  $\eta' = 1$ and  $\eta_h = 1/2$ .

The physical motivations and implications of the above results are discussed in a separate paper [5]: there we argue that the anomalous dimension  $\eta_h$  characterizes photoemission spectra of *mobile* holes in two-dimensional antiferromagnets and superconductors in the vicinity of points in the Brillouin zone where their dispersion spectra are quadratic (*i.e.* near energy minima, maxima, and van Hove singularities). The intensively studied  $(\pi, 0)$ ,  $(0, \pi)$  points (the anti-nodal points) in the high temperature superconductors are prominent examples.

## ACKNOWLEDGMENTS

This research was supported by US NSF Grant No DMR 96–23181.



FIG. 1: Diagrams contributing to the  $\psi$  fermion self energy. The full line is the fermion propagator, while the dashed line is the  $\phi_{\alpha}$  propagator.

## REFERENCES

- <sup>†</sup> URL: http://pantheon.yale.edu/~subir
- [1] S. Sachdev, C. Buragohain, and M. Vojta, Science **286**, 2479 (1999).
- [2] M. Vojta, C. Buragohain, and S. Sachdev, Phys. Rev. B 61, 15152 (2000).
- [3] S. Sachdev and M. Vojta, cond-mat/0009202.
- [4] E. Brézin, J. C. Le Guillou, J. Zinn-Justin in *Phase Transitions and Critical Phenomena*,
  6, C. Domb and M. S. Green eds, Academic Press, London (1976).
- [5] S. Sachdev, M. Troyer, and M. Vojta, cond-mat/0011232.



FIG. 2: Diagrams contributing to the renormalization of the coupling  $\gamma$ . The full circle is the interaction g