
PREFACE

The following review article was published in a conference proceeding in 1992.
I add the following remarks to place it in the context of recent developments:

• With the modern consensus on the meaning of spin-charge separation [1,2],
spin and charge are separated in a BCS superconductor. So the title of the
paper should more properly read “Stable hc/e vortices in a superconductor
near a normal state with spin-charge separation”. This change in terminology
does not modify the discussion of the physical properties of the various phases.

• The mean-field theory presented here ignores the compactness of the U(1)
gauge field ~a, and the related effects of instanton fluctuations. Such effects
will not modify the structure of the phases, but will make the total ~a-flux
in vortices uncertain modulo 2π [3,4]. From the first equation in (17), this
implies that only the value n∆(mod 2) is physically significant.

• The “vison” excitation of Senthil and Fisher [5] is the vortex in Normal State
II with with n∆(mod 2) = 1; the b boson is not condensed in this phase, and
so there is no significance to the value of nb. In the superconductor, finiteness
of the free energy F is imposed by (17,18), and this requires that the vison
must trap a flux of an odd multiple of hc/2e.

• The free energy F displays the same “flux regeneration effect” in a cylindrical
geometry under the protocol described in Ref 6, and represents a simple way of
understanding the effect. Indeed, this effect requires the enhanced stability of
hc/e vortices discussed here, for otherwise hc/2e vortices generated by thermal
or quantum fluctuations as one moves into the normal state will annihilate
the flux in the center of the cylinder. So a direct search for hc/e vortices,
proposed in [7] and reviewed in the following paper, represents an alternative
experimental route.

I thank T. Senthil for many useful discussions. Some related comments have been
made recently in [8]
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A phenomenological model, F , of the superconducting phase of systems with spin-charge
separation and antiferromagnetically induced pairing is studied. Above Hc1, magnetic
flux can always pierce the superconductor in vortices with flux hc/2e, but regimes are
found in which vortices with flux hc/e are preferred. Little-Park and other experiments,
which examine periodicities with a varying magnetic field, always observe a period of
hc/2e. The low energy properties of a symplectic large-N expansion of a model of the
cuprate superconductors are argued to be well described by F . This analysis and some
normal state properties of the cuprates suggest that hc/e vortices should be stable at the
lowest dopings away from the insulating state at which superconductivity first occurs.
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2 Stable hc/e vortices

1. INTRODUCTION

Much attention has recently focussed on the anomalous normal state properties of
the cuprate superconductors1,2. A promising description of the high temperature
state of these materials has emerged from recent gauge theories3. These theories2,3,4

assume that due to strong correlations in the CuO2 layers, the physics at interme-
diate length scales is best described by a separation of the spin and charge degrees
of freedom of the underlying holes. This separation can be encapsulated by the
decomposition of the creation operator d†iα for holes on the Cu d-orbital into the
following

d†iα = f†iαbi (1)

where i is a site label, α =↑, ↓ is the spin index, f is a fermion annihilation operator,
and b a boson annihilation operator. The degrees of freedom of the hole have
separated into a fermionic spinon, fα which carries spin but no charge, and a bosonic
holon which carries charge but no spin. (Theories with a partial separation of spin
and charge are also possible but will be ignored here for simplicity; see Ref 5.) It
is now assumed that there exists an intermediate length scale at which the system
is well described by the independent propagation of the b and fα quanta. This
is does not exclude the possibility that at sufficiently large length scales or low
temperatures the b and fα quanta are actually confined.

This paper summarizes recent work5,6 which studies the consequences of ex-
tending the assumption of spin-charge separation from the normal to the supercon-
ducting phase. (Some of the discussion below is taken from Ref 5, but additional
clarifying remarks have been added; the present paper should be read first and Refs
5,6 can be consulted for additional details.) An additional assumption about the ori-
gin of superconductivity will be used: the pairing induced by the antiferromagnetic
interactions between the spinons will be taken to be the cause of superconductivity.
We will therefore be interested in the pairing amplitude

∆ij =
〈

εαβf†iαf†jβ

〉

(2)

which measures the tendency of spinons at site i, j to form a spin-singlet. A large
value of ∆ indicates the presence of strong antiferromagnetic spin-correlations, but
not necessarily the presence of superconducting coherence.

This paper shall review how the above assumptions can be used to formulate
a phenomenological model F of the superconducting phase and its transition to
the anomalous normal state; a closely related phenomenological free energy for
superconductors with broken time-reversal invariance has been discussed by Wen
and Zee4 - time-reversal invariance will be assumed to be preserved in the present
paper. We will then explore whether the properties of F are in any way distinct
from the usual phenomenological Landau-Ginzburg description in terms of a charge
2e superconducting order parameter. The main new result will be the existence of
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parameter regimes in which the lowest energy mechanism for magnetic flux to pierce
the system is with vortices carrying flux hc/e. Magnetic flux can also penetrate in
vortices with flux hc/(2e) but such configurations are found to be not always globally
stable as they can lead to a large loss in the antiferromagnetic correlation energy.
In contrast, the configurations with hc/e vortices are able to allow penetration of
magnetic flux by loss of superconducting coherence in the vortex cores, without a
concomitant loss in antiferromagnetic correlations. A microscopic, symplectic large-
N expansion7,8 of a model of the CuO2 layers6 suggests that the region of stability
of the hc/e vortices is the low-doping boundary of the superconducting state - i.e.
the superconducting region closest to the half-filled insulating state. We argue
that this conclusion is also supported by differences between NMR experiments
on the normal state in the small and large doping regions9. However, a strong
first-order superconductor-normal transition could preempt the existence of stable
hc/e vortices. Flux decoration experiments of these “low” Tc superconductors will
therefore be of great interest.

An important property of the model of this paper is that the preference for hc/e
vortices is purely energetic. The fundamental ‘flux-quantum’ remains at hc/2e.
In particular, experiments which examine periodicities as a function of a varying
magnetic field observe a period in total magnetic flux of hc/2e throughout the
superconducting phase (see Section 4.2). One such experiment is that of Little and
Parks10 which measures shifts in Tc of a thin-walled superconducting cylinder in an
axial magnetic field.

2. PHENOMENOLOGICAL FREE ENERGY

We begin by obtaining the phenomenological model, F , of superconductivity in the
presence of spin-charge separation. We noted above that an important field is the
pairing amplitude ∆ of two spinons. However condensation of ∆ is not sufficient
to obtain superconductivity; as is well known, and is also shown below to be a
simple consequence of F , superconductivity requires in addition the condensation
of the holon b. In contrast to earlier assertions11, we have shown elsewhere6 the
condensation of single b quanta (and not just pairs of b quanta) occurs in the
presence of incommensurate spin-correlations - incommensurate correlations have
recently been observed in neutron scattering experiments12. The phenomenological
free energy, F , will therefore be expressed in terms of the condensates of the spinon
pairing amplitude ∆ and the holon b.

The form of the phenomenological free energy controlling fluctuations of the
fields ∆ and b is essentially dictated by gauge invariance. The decomposition (1)
of the physical hole operator introduces a redundancy in the degrees of freedom
which can be removed by demanding that all observable correlations functions be
invariant under the following gauge transformations:

f† → f† exp(iχ)

∆ → ∆ exp(2iχ)
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b → b exp(−iχ− ieω)

d† → d† exp(−ieω)
~A → ~A− ~∇ω (3)

Here χ generates the internal UI(1) gauge symmetry introduced by the decompo-
sition (1). The electromagnetic gauge symmetry, Uem(1), is generated by ω and
its vector potential is ~A. We have absorbed a factor of 1/(h̄c) in the magnitude of
e. The d fermion carries electromagnetic charge e which is carried completely by
the holon b. The physical superconducting order parameter ΨSC

ij =
〈

εαβd†iαd†jβ

〉

is of course invariant under UI(1) and transforms like a charge 2e scalar field
ΨSC → ΨSC exp(−2ieω) under Uem(1). In writing down the above gauge trans-
formations we have taken the continuum limit of a lattice gauge-invariance at the
wavevector k = 0. In some microscopic models, fluctuations at the antiferromag-
netic wavevector k = (π, π) are also important; the consequences of including these
will be discussed in Section 6.

The assumption of spin-charge separation requires that we allow the b, fα and
∆ quanta to propagate independently, i.e. the free energy F contain quadratic
spatial-gradient terms in these fields. However the gauge invariances in (3) make
it impossible to write down such terms using these fields alone. It is necessary to
introduce a gauge connection ~a for the internal gauge symmetry UI(1) to allow such
propagation2,3,4; this gauge connection also appears naturally out of microscopic
large N expansions6. We therefore have the additional transformation rule

~a → ~a− ~∇χ (4)

In, or close to, the superconducting phase we expect that the fermions can be
safely integrated out and the system described solely in terms of ∆, b and ~a. The
invariances (3), (4) dictate that their action for static fluctuations be of the following
form

F =
∫

d2r
[

|(~∇+ 2i~a)∆|2 + r1|∆|2 +
u1

2
|∆|4

+ |(~∇− i~a− ie ~A)b|2 + r2|b|2 +
u2

2
|b|4

+v|b|2|∆|2 +
1
8π

(~∇× ~A)2 +
σ
2

(~∇× ~a)2 + · · ·
]

(5)

with u1, u2 > 0, and v2 < u1u2. The fields ∆ and b have been rescaled to make
the coefficients of their gradient terms unity. The parameters r1, r2, u1, u2, v, and
1/σ all have the dimensions of E/L2 (L is the unit of length, and E the unit of en-
ergy) and are expected to be of roughly the same order of magnitude; an exception
to this is the region close to the superconductor-normal phase boundary when a
combination determining the superconducting coherence length will become large.
The term proportional to σ represents the ‘diamagnetic’ response of the spinons
that have been integrated out: this is the energy associated with introducing an
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additional ‘flux’ into the ground state of the antiferromagnet at half-filling. The
electric charge e has dimensions of

√
E/L; we will study only strong type II su-

perconductors, in which case 4πe2 � u1, u2, 1/σ. It is the inequality 4πe2 � 1/σ
which distinguishes the role of Uem(1) and UI(1): it implies that the fluctuations of
~A are almost pure gauge while the flux ~∇×~a is strongly fluctuating. The connection
between F and a symplectic large N expansion6 on a realistic microscopic model
of the CuO2 layers was discussed in Ref 5 and will not be duplicated here; this
analysis will give some information on the variation of the parameters in F with
temperature and doping.

A cross-term (~∇× ~a) · (~∇× ~A) in F is also permitted by the gauge symmetries
of (3), (4). We shall assume that the coefficient of such a term is 0; this is in fact
equivalent to the assumption that all of the charge of the hole resides on the holon
b. A non-zero coefficient of (~∇×~a) · (~∇× ~A) leads to partial separation of spin and
charge. Such a possibility was examined in Ref 5 and shown not to significantly
modify any of the conclusions below.

We also introduce the gauge invariant currents

~J∆ =
1
i
Im

(

∆∗(~∇+ 2i~a)∆
)

~Jb =
1
i
Im

(

b∗(~∇− i~a− ie ~A)b
)

(6)

Upon examining variations of F with respect to ~A, the electromagnetic supercurrent
is easily seen to be ~Jem = −e ~Jb. Stationarity of F with respect to variations in ~a
leads to the condition

−2 ~J∆ + ~Jb = σ~∇× (~∇× ~a) (7)

This equation can be interpreted as the consequence of the local constraint on the
spinons and holons; the terms on the left-hand side represent the current of pairs
of fα fermions and the boson current respectively, while the right hand side is the
current of the the single fα fermions which have been integrated out.

3. PHASE-DIAGRAM OF F

We now discuss qualitative features of the phases of F in the simplest mean-field
theory which ignores the fluctuations of the gauge fields. The results of a mini-
mization of F with respect to the mean field values ∆ = ∆̄ and b = b̄ are shown in
Fig 1 as a function of r1 and r2. At the mean-field level, the point r1 = 0, r2 = 0
behaves like a tetracritical point13 with four regions converging upon it. These four
regions are characterized by finite or zero values of |∆̄| and |b̄|; the existence of these
four regions was also noted by Wen and Zee4. We discuss the four regions, and the
nature of the boundaries between them, in turn:
(i) Superconductor :
Only the region in which both |∆̄| and |b̄| are non-zero is superconducting as
ΨSC ∼ ∆̄b̄2. All other regions are “normal” and do not display a Meissner ef-
fect for ~A. The boundaries between the superconductor and its neighboring regions
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FIG 1. Mean-field phase diagram of F as a function of r  and r  for v > 0  and 
v  < u  u  . The point O is r  =0  and r  =0. The mean-field phase transitions are 
shown by dashed lines. The boundaries of the superconducting phase are given by    
r  - (r  v)/u  =0 and r  - (r  v)/u  = 0. The expected location of the 
superconductor-normal transition in the presence of fluctuations is shown by the 
solid line; the various normal states have only quantitative differences in their 
properties and are expected to be connected by smooth crossovers in d=2. The 
region of stability of the hc/e vortices is close to the superconductor-normal-state 
II phase boundary and well away from the superconductor-normal-state I 
boundary.
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Fig. 1. Mean-field phase diagram of F as a function of r1 and r2 for v > 0 and v2 < u1u2.
The point O is r1 = 0 and r2 = 0. The mean-field transitions are shown by dashed lines. The
boundaries of the superconducting phase are given by r1 − (r2v)/u2 = 0 and r2 − (r1v)/u1 = 0.
The expected location of the superconductor-normal transition in the presence of fluctuations
is shown by the solid line; the various normal states have only quantitative differences in their
properties and are expected to be connected by smooth crossovers in d = 2. The region of stability
of the hc/e vortices is close to the superconductor-normal-state II phase boundary and well away
from the superconductor-normal-state I boundary.
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are thus true phase transitions. The normal phases however display important
quantitative differences in their properties.
(ii) Normal state I :
This is the region with only b̄ non-zero and is most like a conventional Fermi liquid.
It was shown in Ref 5 that the transition between this region and the superconduct-
ing phase is well described by the fluctuations of a scalar, Ψ2e, which is invariant
under UI(1) and carries electromagnetic charge 2e.
(iii) Normal state II :
Here only ∆̄ is non-zero and the normal state has strong antiferromagnetic correla-
tions. This is expected to lead to a pseudo-gap feature in the fα fermion spectrum
and a suppression of the spin susceptibility. The transition between this phase and
the superconductor was shown in Ref 5 to be controlled by the fluctuations of a
scalar, Ψe, which is invariant under UI(1) and carries electromagnetic charge e. We
expect F to display a smooth crossover in the superconductor-normal transition
between regimes dominated by fluctuations of scalars with charge e and 2e as one
passes from normal state II to normal state I.
(iv) Normal state III :
Now both the mean-field values b̄ and ∆̄ are zero. The novel properties of this
region have already been examined by Nagaosa and Lee and Ioffe and Weigmann3.

The consequences of gauge-field fluctuations upon the transitions between nor-
mal states I,II, and III are expected to be significantly different from those between
the superconductor and the normal states. The superconducting order will be coher-
ent between the CuO2 layers and the critical fluctuations near the superconductor-
normal transition will be three-dimensional. In contrast the UI(1) gauge connection
can only be defined within each layer; fluctuations between the normal states are
therefore described by a two-dimensional Abelian Higgs model which is expected
to possess a smooth crossover and not a phase transition14. The non-local order
parameter construction15, which demands the existence of a phase transition be-
tween the Higgs and normal phases, fails in d = 2. Of course, none of the above
considerations rule out a first-order transition between the normal states.

NMR data of the Cu Knight shift in Y Ba2Cu3O6.5+δ for δ ∼ 0.19 shows a
strong temperature dependent suppression of the spin susceptibility at tempera-
tures above the superconducting Tc. This is consistent these compositions and
temperatures being identified as normal state II. At larger dopings near δ ∼ 0.5,
the spin susceptibility of the non-superconducting phase is temperature indepen-
dent, consistent with the properties of normal state I. I am grateful to A. Millis for
drawing my attention to this data. Finally, the normal state III region is expected
to appear at higher temperatures at all doping concentrations.

These assignments are also consistent with the results of a previous microscopic
large N calculation on a three-band model of the CuO2 layers6; this results of
this calculation are summarized in Fig 2. Note that the overall topology of the
phases is consistent with the Landau theory results summarized in Fig 1; the control
parameters r1, r2 have now been replaced by the temperature T and the doping δ.



8 Stable hc/e vortices

Superconductor

Normal State I

Normal State III

Normal 
     State II

0.04

0.03

0.02

0.01

0.1 0.2 0.3

T

δ
Fig. 2. Phase diagram from Ref 6 of the symplectic large-N calculation on a model of the copper-
oxide layers. The y-axis is the temperature and the x-axis is the doping. Notice the similarity in
the topology of this figure and the Landau theory results of Fig 1. The solid line is the only true
phase transition and separates the normal states from the superconductor. The thick line at small
doping denotes a first-order transition; elsewhere it is second-order. The region of stability of the
hc/e vortices is expected to be the superconductor closest to the normal-state II phase.
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Just as was argued in the previous paragraph, we find normal state I in the small
doping region, normal state II in the large doping region and normal state III at
high temperatures. The transition between normal state II and the superconductor
is found to be first-order at the lowest temperatures in the large N limit (Fig 2 and
Ref 6).

4. PROPERTIES OF THE SUPERCONDUCTING PHASE

In this section we examine the properties of the action F (Eqn (5)) in the supercon-
ducting phase. We will focus on the response of the system to an external magnetic
field in both bulk and multiply connected geometries.

4.1. Electromagnetic Response in the Bulk Superconductor

Deep within the superconducting phase, it is permissible to replace ∆ and b by the
mean-field values ∆̄ and b̄ which minimize F :

|∆̄|2 = −r1u2 − r2v
u1u2 − v2

|b̄|2 = −r2u1 − r1v
u1u2 − v2 (8)

Inserting this into F (Eqn (5)), the resulting action for ~a and ~A takes the form

Fa =
∫

d2r
[

(~a + e ~A)2|b̄|2 + 4~a2|∆̄|2 +
1
8π

(~∇× ~A)2 +
σ
2

(~∇× ~a)2
]

(9)

We may now integrate out the massive ~a fluctuations and obtain the following
effective action for the electromagnetic field for small e2

Fem =
∫

d2r
[

1
8π

(

(~∇× ~A)2 +
1
λ2

~A2
)]

(10)

The London penetration depth λ is given by

1
λ2 = 8πe2 1

1/|b̄|2 + 1/|2∆̄|2
(11)

Notice that the inverse-square London penetration depth, or equivalently the su-
perfluid density is approximately proportional to the smaller of |b̄|2 and ∆̄|2. In the
event that either of them vanishes, so does the superfluid density and the Meissner
response. This also demonstrates our earlier assertion that condensation of both ∆
and b is required for the presence of superconductivity.

4.2. Little-Parks Experiment

In this section we determine the value of the ‘flux-quantum’, as determined by a
Little-Parks experiment16. We will find that it takes the value hc/2e throughout
the superconducting phase.
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Consider a thin-walled superconducting cylinder of radius R with electromag-
netic flux Φ̃A along the axis of the cylinder. Ignoring the radial dependencies, we
expect that the fields will take the values

∆ = ∆̄ exp(in∆θ)

b = b̄ exp(inbθ)

Aθ =
Φ̃A

2πR

aθ =
Φ̃a

2πR
(12)

where θ is the angular co-ordinate, and the integers n∆, nb and the real number Φ̃a

must be chosen to minimize the value of F in the presence of the electromagnetic
flux Φ̃A. Inserting (12) into F we find that the free-energy density, FR, is

FR =
|2∆̄|2

4π2R2

(

πn∆ + Φ̃a

)2
+

|b̄|2

4π2R2

(

2πnb − Φ̃a −
e
h̄c

Φ̃A

)2
+ . . . (13)

where we have reinserted factors of h̄c and the omitted terms are independent of
the fluxes and the phase windings n∆, nb. Finally, we minimize FR with respect to
Φ̃a and obtain

FR =
π2e2

h2c2R2

1
1/|b̄|2 + 1/|2∆̄|2

(

Φ̃A −
hc
2e

(n∆ + 2nb)
)2

(14)

Two important features of FR are immediately apparent: (i) the minimum value of
FR over the set of integers n∆, nb is a periodic function of Φ̃A with period hc/2e;
(ii) the amplitude of the oscillation is proportional to the superfluid stiffness, or
equivalently, the inverse London penetration depth squared (See Eqn (11)).

5. VORTICES IN THE SUPERCONDUCTING PHASE

We finally turn to a discussion of the structure of vortices of F in the superconduct-
ing phase. It is of course important to characterize the vortex by gauge-invariant
quantities. Far from the core of the vortex, finiteness of the energy demands the
configuration

∆(~r) = ∆̄ exp (iφ∆(~r)) ; b(~r) = b̄ exp (iφb(~r)) (15)

The values of the phases φ∆, φb are non-gauge-invariant, but the integers n∆, nb

n∆ =
1
2π

∮

C

~∇φ∆ · d~r ; nb =
1
2π

∮

C

~∇φb · d~r (16)

(where the contour C encircles the core of the vortex) are invariant under non-
singular gauge transformations of both UI(1) and Uem(1). Singular gauge transfor-
mations for UI(1) are forbidden by the presence of the σ(~∇× ~a)2 term in F . Each
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pair of integers (n∆, nb) thus defines a topologically distinct vortex configuration.
The existence of a two-parameter family of vortices has already been pointed out
by Wen and Zee4. To determine the values of the fluxes of ~a and ~A, we apply the
usual argument17 for the finiteness of the vortex energy to the two gradient terms
in F . This yields the constraints (after restoring factors of h̄c)

−2
∫

d2r(~∇× ~a)z = 2πn∆

∫

d2r
[

(~∇× ~a)z +
e
h̄c

(~∇× ~A)z

]

= 2πnb (17)

for a vortex in the x, y plane. Solving for the total electromagnetic flux we find
∫

d2r(~∇× ~A)z =
hc
2e

(n∆ + 2nb). (18)

Note that, in contrast to the conventional Abrikosov theory, the electromagnetic
flux does not uniquely define a vortex configuration; there is an infinite number of
choices of the integers n∆, nb for a given e.m. flux.

We will now estimate the energy of various vortex configurations as a function
of the Landau parameters r1, r2; all other Landau parameters will be assumed to
be fixed at values of order unity. The energy Fv can be estimated as the sum of
two physically distinct contributions:

Fv = Fc + Fsf (19)

The first term Fc is the core contribution from the region which is within a su-
perconducting coherence length, ξ, of the center of the vortex. Its magnitude will
estimated below for some illustrative values of n∆, nb. The second term, Fsf , is
the contribution of the region well away from the core of the vortex where the en-
ergy is dominated completely by the kinetic energy of the superflow. Under such
conditions the properties of F can be shown5 to be indistinguishable from those
of the conventional Landau-Ginzburg free energy of superconductivity. A simple
extension5 of the standard calculation shows

Fsf ∼ (n∆ + 2nb)2

e2λ2 ln κ

∼ (n∆ + 2nb)2min(|r̃1|, |r̃2|) ln κ (20)

where κ = λ/ξ is the Ginzburg-Landau parameter. In the second expression we
have used the results (8) and (11) near the boundary between the superconductor
and the normal states; r̃1 = r1− (r2v)/u2 is the renormalized “mass” of the ∆ field
and equals the horizontal distance to the superconductor-normal state I boundary
in Fig 1 while r̃2 = r2 − (r1v)/u1 is the renormalized |b| “mass” and equals the
vertical distance to the superconductor-normal state II phase boundary. Note that
as usual Fsf is proportional to the square of the electromagnetic flux in the vortex.
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For a given total flux therefore, Fsf will be minimized by configurations in which
the flux is split into vortices carrying the smallest allowable unit of hc/2e.

We now estimate the value of Fc for two elementary vortex configurations:
(a) n∆ = 1, nb = 0
The flux in this vortex is hc/2e. The existence of a non-trivial winding in the phase
of ∆ and finiteness of F demand that |∆| vanish at the core of the vortex. In
contrast, |b| can remain finite at the center. The vanishing of ∆ implies that the
system loses both superconducting coherence and antiferromagnetic correlations at
the core of the vortex. Standard techniques17 can be used to estimate the core
energy and we find

Fc ∼ |r̃1| (21)

(b) n∆ = 0, nb = 1
The flux in this vortex is hc/e. The existence of a non-trivial winding in the phase of
b and finiteness of F now demand that |b| vanish at the core of the vortex, while |∆|
can remain finite. The vanishing of b implies that the system loses superconducting
coherence but the finite value of ∆ indicates that antiferromagnetic correlations are
preserved. As above, the core energy is estimated to be

Fc ∼ |r̃2| (22)

From Eqns. (19), (20), (21), (22) we see that a remarkable situations can develop
in the parameter regime

|r̃2|
|r̃1|

<
1

ln κ
(23)

The energy of the hc/2e vortex (n∆ = 1, nb = 0) is dominated by the core contribu-
tion and scales linearly with |r̃1|. The loss of antiferromagnetic correlations in the
core of this vortex has a large energy cost in this regime. In contrast the energy of
the hc/e (n∆ = 0, nb = 1) scales linearly with the smaller |r̃2|. Antiferromagnetic
correlations are preserved in the core of this vortex and the system has to only pay
the small cost of the loss of superconducting coherence. Placing the superconduc-
tor in an external magnetic field larger than Hc1, under conditions in which (23) is
satisfied, will therefore lead to the appearance of vortices with flux hc/e. Detailed
numerical calculations of the vortex solutions of F have been performed5 and the
region of stability of the hc/e vortices was found to be roughly consistent with (23).

An experimental test of the appearance of hc/e vortices will clearly be useful.
It is of course necessary to search for a regime in which |r̃1| � |r̃2|. This is most
likely in the region closest to the superconductor-normal state II phase boundary
and well away from the superconductor-normal state I phase boundary. From Figs 1
and 2 and our earlier discussion of the NMR experiments and the large N expan-
sion, we conclude that the most favorable regime is near the low doping onset of
superconductivity as one moves away from the insulating state. A strong first-order
transition between the superconductor and normal-state II could however prevent
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the existence of a region in which |r̃1|/|r̃2| is large enough; the large-N calculation
did find this transition to be first-order at the very lowest temperatures (Fig 2).

6. VORTICES AND STAGGERED GAUGE INVARIANCE

Some earlier studies11,18,6 of antiferromagnetically induced superconductivity have
attached much importance to the two-sublattice structure of the CuO2 layers. In
particular in the presence of strong antiferromagnetic pairing, these theories find
two species of holons, each residing on one of the sublattices. In this section, we
will extend our results to include the sublattice structure. The main result will
be an understanding of the importance of incommensurate spin correlations on the
stability of hc/e vortices.

To include the sublattice structure, we have to be more careful in taking the
continuum limit of the lattice gauge symmetry. In addition to the uniform compo-
nent, UI(1), of the internal gauge symmetry, we need to keep track of its staggered
component Us(1). Under Us(1) the holons on the two sublattices have oppositte
charges6. Labeling the holons on the two sublattices bA and bB , we generalize the
gauge transformations of (3) to

bA → bA exp(−iχ− iρ− ieω)

bB → bB exp(−iχ + iρ− ieω) (24)

where the field ρ generates the staggered gauge transformation Us(1). The antifer-
romagnetic pairing amplitude, ∆, involves spinons on opposite sublattices

∆ =
〈

εαβf†Aαf†Bβ

〉

(where fα
A, fα

B are the spinons on the A and B sublattices) and therefore does not
carry any Us(1) charge:

∆ → ∆exp(2iχ). (25)

We also need a field, ψ, to allow hopping of the spinons and holons between the
two sublattices: we have

ψ ∼
〈

b†AbB

〉

or ψ ∼
〈

f†Bαfα
A

〉

(26)

Condensation of ψ implies the appearance of incommensurate spin-correlations7,8,6.
As such correlations have been observed experimentally12, we will assume that ψ is
condensed over the entire low-temperature region. Under the gauge transformations

ψ → ψ exp(2iρ). (27)

Finally we need the gauge connections associated with all three gauge symme-
tries:

~A → ~A− ~∇ω

~a → ~a− ~∇χ

~as → ~as − ~∇ρ (28)
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Gauge and sublattice symmetries now constrain the effective action for ψ, ∆,
bA and bB into the following form6:

Fs =
∫

d2r
[

|(~∇+ 2i~a)∆|2 + r1|∆|2 + |(~∇+ 2i~as)ψ|2 + rs|ψ|2

+ |(~∇− i~a− i~as − ie ~A)bA|2 + |(~∇− i~a + i~as − ie ~A)bB |2 + r2(|bA|2 + |bB |2)

+g(ψ∗b†AbB + H.c) +
1
8π

(~∇× ~A)2 +
σ
2

(~∇× ~a)2 +
σ′

2
(~∇× ~as)2 + · · ·

]

(29)

Higher-order terms which stabilize the action have not been explicitly written down.
Fradkin and Kivelson18 also considered a similar action but without the fields ∆, ψ.

We now examine vortex minima of Fs. The existence of superconductivity re-
quires that ∆, bA, bB be condensed. Condensation of bA, bB will induce condensation
of ψ (via the term proportional to g in Fs) in the superconducting phase. A su-
perconducting phase with purely commensurate spin correlations is therefore not
within the realm of possibilities of the theories considered in this paper. However,
for reasons which will become clear below, we will require that ψ be condensed in
the normal phase before the onset of superconductivity, and thus rs < 0 at the
superconductor-normal phase boundary. Far from the core of the vortex the mag-
nitudes of ∆, ψ, bA, and bB will saturate at constants but their phases may have
a non-trivial winding. Let the winding numbers of their phases be respectively
n∆, nψ, nA and nB . Then, a standard argument appealing to the finiteness of the
energy shows that

∫

d2r
[

(~∇× ~a) + (~∇× ~as) +
e
h̄c

(~∇× ~A)
]

= 2πnA

∫

d2r
[

(~∇× ~a)− (~∇× ~as) +
e
h̄c

(~∇× ~A)
]

= 2πnB

∫

d2r(~∇× ~a) = πn∆

∫

d2r(~∇× ~as) = πnψ (30)

where we have re-inserted factors of h̄c. Consistency among these equations requires
that

nψ = nB − nA (31)

The total electromagnetic flux is found to be
∫

d2r(~∇× ~A) =
hc
2e

(n∆ + nA + nB) (32)

The crucial point, apparent from Eqns (31) and (32), is that vortices with flux hc/2e
necessarily have

either nψ 6= 0, or n∆ 6= 0 or both. (33)
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However a vortex with flux hc/e with nA = 1 and nB = 1 can have nψ = n∆ = 0. By
an argument very similar to that in Section 5 we may conclude that in a region with
strong antiferromagnetic correlations (r1 � 0), incommensurate spin correlations
(rs � 0), but weak superconductivity (r2 < 0), vortices with flux hc/e will be
stable. Note that it is crucial that incommensurate spin correlations be present in
the normal state before the onset of superconductivity. Recent experiments12 show
this requirement to be satisfied. Only under such conditions will there be an energy
gain associated with vortices which preserve the incommensuration (i.e. ψ 6= 0)
in their cores. Note also that if the spin correlations were commensurate in the
normal state, our theory shows that the onset of superconductivity would in any
case induce incommensurate correlations; this latter effect is however not sufficient
for the stability of hc/e vortices.

7. CONCLUSIONS

This paper has examined a phenomenological model of superconductivity in strongly
correlated electronic systems1,3,4. The strong repulsive interactions introduce a
continuum UI(1) × Us(1) gauge invariance which is crucial in restricting the form
of the phenomenological free energy. The assumption of spin-charge separation and
the gauge invariances require the introduction of gauge-connections to allow for
independent propagation of the spinons and holons2,3. The superconductor was
described by a phenomenological free energy, F , expressed in terms of condensates
of the holons and the spinon pairing field ∆.

An attempt was then made to determine if F displayed any measurable differ-
ence from the usual Landau-Ginzburg free energy of a conventional superconductor.
It was found that over a large portion of the superconducting phase, the two ap-
proaches were essentially indistinguishable. One striking difference did however
appear in the response of the superconductor to an external magnetic field. Near
the phase boundary in F between the superconductor and an antiferromagnetically
correlated normal state, vortices with flux hc/e generically become the optimum
way for the magnetic field to pierce the system. It was shown that such vortices can
pierce the system without leading to a significant loss in the antiferromagnetic cor-
relation energy, while hc/2e vortices always have a significant energy loss associated
with poor spin correlations in their cores. In the cuprate superconductors the most
favorable region for this was found to be the lowest doping concentrations at which
superconductivity first occurs. The hc/e vortices also become increasingly likely as
the field goes from Hc1 to Hc2: this is because the vortex core-energy contributes
the largest fraction of the total energy at Hc2. An experimental search for such
vortices will be quite useful. An important caveat is that the hc/e vortices could be
preempted by a strong first-order transition between the superconductor and the
normal state. In either case, an experimental test of the scenario of this paper is
available.
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