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5.1 Introduction

A metallic glass is a solid consisting of metallic atoms arranged in a random manner with no

obvious long-range correlation in the atomic positions. While such random atomic arrange-

ments are easy to achieve in materials with covalent bonding, until 1960 the solid state of all

known metals and metallic alloys consisted of regular, periodic arrangements of the atoms.

The first metallic glass was produced in 1960 by Duwez and coworkers [1] by rapidly cooling

a molten alloy of gold and silicon. Metallic glasses have since then been created in large

numbers of simple metal, transition metal and metalloid systems by a variety of ingenious

methods. ‘Splat-cooling’ techniques have been developed to achieve cooling rates of over

a million degrees per second and have created a completely new metallurgical technology.

The new metallic materials so produced have proved to be of considerable technological

importance for their unique magnetic, mechanical and corrosion-resistance properties [2].

In this chapter we investigate the question of how ‘random’ the atomic arrangements

in a metallic glass really are. In particular, an attempt shall be made to identify features

of the structure which are not sensitive to the microscopic details like the nature of the

interatomic potential, directional bonding and local charge transfer between the atoms. Our

analysis shall therefore based upon understanding the structural properties of dense and

supercooled systems of atoms interacting with each other through spherically symmetric

forces. We find that there are significant short-range orientational correlations between the

atomic arrangements: the characterization of these orientational correlations will be the

main subject of this paper.

As constructed, the theories reviewed in this chapter are directly applicable to any dense,

supercooled liquid of spheres interacting with a pair-potential which has a repulsive hard-

core and a weak long-range attraction. Such systems can be easily realized in computer

3



simulations, but there is no known bulk monoatomic metallic glass. However amorphous

films of cobalt and iron have been made by deposition of the metallic vapor on a substrate at

liquid helium temperatures. We will compare our results with X-ray scattering measurements

on such films. We shall also argue that our results can also be applied to a large class of real

metallic glasses: glass forming metal-metalloid and metal-metal alloys.

A key property of the systems we shall consider is that they are frustrated. By ‘frustra-

tion’ we mean that particles in the ground state cannot simultaneously sit in the minima

presented to them by pairwise interactions with their neighbors. This leads to a large de-

generacy in the ground state. In phase space, the system has large numbers of nearly equal

free energy minima separated by substantial free energy barriers. If the system gets locked

into one of these minima upon cooling from the liquid, a glassy or amorphous state can

result. Our main objective shall be to determine the atomic correlations at a ‘typical’ local

minimum of the free energy.

5.2 Three-dimensional sphere packings and frustration

In this section we shall introduce several qualitative methods of characterizing the order

in supercooled liquids. A quantitative approach shall be taken in the next section after

the introduction of a suitably defined order-parameter and associated Landau free energy.

As noted above, we shall be interested in characterizing the local minima of a system of

interacting particles with a Lennard-Jones like pair potential; i.e. a potential with a strong

hard core repulsion and the a long attractive tail. A related problem we shall also consider

is the dense random packing of identical spheres.

The sphere-packing problem has a trivial solution when the spheres are constrained to

move in a single plane. Three spheres will clearly lie at the vertices of an equilateral triangle.

4



Four spheres will form two equilateral triangles sharing a common edge. It is clear that we can

extend the arrangement of equilateral triangles to the triangular lattice and accommodate an

infinite number of spheres. This packing is the densest possible packing and all particles sit

in the minima of the potential due to their six nearest neighbors. Thus the locally optimum

arrangement of three spheres (the triangle) has a unique periodic extension and the system

is clearly unfrustrated.

The physics changes dramatically when we allow the particles to move in three dimen-

sions. The state of minimum energy for four particles is the tetrahedron, shown in Fig 1.

Computer simulations of a Lennard-Jones system [3] show that larger numbers of parti-

cles like to arrange themselves in configurations that maximize the number of tetrahedra.

In Figs. 2 and 3 we show systems of seven and thirteen particles whose states of global

minimum energy are the pentagonal bipyramid and the icosahedron respectively. Both the

configurations can be divided very simply into tetrahedra: the pentagonal bipyramid has

five tetrahedra around the central bond. The icosahedron is in turn made up of 12 inter-

penetrating pentagonal bipyramids centered on the 12 bonds from the center to the vertices

of the icosahedron. Another important local minimum is the 6 particle octahedral arrange-

ment shown in Fig 4; unlike the previous configurations it cannot be split into approximately

equilateral tetrahedra. Note however that the octahedron has an appreciable ‘hole’ in the

middle, indicating that it is a poor starting point in the search for metastable minima for

larger numbers of particles.

One manifestation of the frustration in the packing of these particles, is the fact that the

bond lengths in the pentagonal bipyramid and the icosahedron are not all equal. The bonds

in the center of both solids are approximately 5% smaller than the bonds on the surface.

Alternatively, if one attempted to put five perfect tetrahedra around a bond one would be
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left with a gap of 7.4 degrees between the first and last tetrahedron. See Fig 5. This situation

is in sharp contrast to the case in flat two-dimensional space where six equilateral triangles

form a perfect hexagon.

We now turn to the analysis of simulations on the dense-packing of spheres. We shall

examine both computer simulations and actual experiments on the dense packing of arrays

of ball bearings. An important tool in the analysis of such configurations is the Voronoi

construction. The region of space closer to an atom than to any other is identified as the

Voronoi polyhedron associated with that atom. Two atoms are then identified as nearest

neighbors if their Voronoi polyhedra share a common face. The network of nearest neighbor

bonds obtained in this manner can be shown to consist only of tetrahedra (barring excep-

tional degeneracies). The decomposition of space into a tetrahedral network is physically

meaningful only if all the tetrahedra are approximately equilateral and the number of nearly

octahedral arrangements relatively small.

One of the early experiments on the packing of ball-bearing arrays was carried out by

Bernal [4]. Finney [5] performed a Voronoi decomposition of the Bernal structure and found

that 45% of the bonds were the centers of pentagonal bipyramids. Further dense packing

experiments were performed by Bennett [6] who used an algorithm designed to give structures

denser than those obtained by Bernal. A relaxation by Ichikawa [7] of the Bernal structure

and a subsequent Voronoi analysis yielded pentagonal bipyramids on 52% of the bonds.

Moreover Finney and Wallace [8] found that the Bennett structure could be well described

by local configurations which were either approximately equilateral tetrahedra or octahedra:

over 80% of the local configurations were tetrahedra. This latter fact justifies the use of the

Voronoi construction in Ichikawa’s analysis of the structure.

The theory of metallic glass structure we review here attaches particular importance to
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the bonds with five tetrahedra around them (‘five-fold’ bonds, Fig 2) as a structural motif.

The pentagonal bipyramid is the densest possible packing of 7 particles and can thus be

regarded as a locally ideal ordered configuration; this notion of ordering will be made precise

in the next section. The system would clearly like to extend the five-fold bonds into all space

but the geometrical properties of flat three dimensional space make this impossible. Instead,

as the dense packing simulations discussed above show, as many as 48% of the bonds turn out

to be either six-fold (Fig 6) or four-fold (Fig 7). The four-fold bonds are actually distorted

octahedra and the issue of whether they are better regarded as a collection of four tetrahedra

or as an octahedron can be decided by examining the bond-lengths: such a criterion was used

by Finney and Wallace [8] in the work discussed in the previous paragraph. The Voronoi

construction will, of course, always yield only tetrahedra.

Following Nelson [9], we will describe an instantaneous snapshot of a dense supercooled

liquid in terms of its arrangement of five-fold bonds. If a particle has twelve five-fold bonds

emerging from it, its co-ordination shell will from an icosahedron (Fig 3). Nelson [9] therefore

introduced an orientational order parameter which would acquire its maximum value at a

particle at the center of an icosahedron. The four-fold and six-fold bonds could then be

identified as positive and negative disclination defects in the ideal icosahedral order. The

connection with the bond orientational order in two-dimensional hexatics (Chapters 2-4)

is apparent: in this case the perfectly ordered sites are particles with six neighbors and

the five and seven fold coordinated particles form disclination defects in the orientational

order. There is however a crucial difference between these two systems: the defects in two-

dimensional hexatics are induced purely by thermal fluctuations; in contrast the four-fold

and six-fold bonds are forced into any random close packing of spheres by the frustration

inherent in flat three dimensional space. The defects are quite dense: a bond is defected with
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probability close to 1/2. Assuming that the defects are randomly distributed, the probability

that a particle will have exactly 12 five-fold bonds emerging from it is smaller than 1 in 1000.

In their molecular dynamics simulation of 999 particles, Finney and Wallace [8] did not find

a single icosahedron: this is not surprising in the light of the above discussion.

We note also the work of Steinhardt et. al. [10] which focussed attention on the impor-

tance of five-fold bipyramids. In a computer simulation of a super-cooled Lennard-Jones

liquid, these investigators examined the system for the presence of bond-orientational order

associated with five-fold bonds and icosahedra. They found orientational order at sufficiently

low temperatures with a correlation length comparable to the size of the system.

5.2.1 Frank-Kasper phases

Just prior to the work of Bernal and followers, was the analysis of Frank and Kasper [11]

of certain inter-metallic crystalline alloys. They noted that a large number of intermetallic

compounds (the Laves phases MgCu2, MgZn2, CaZn5, the µ-phase Fe7W6, CaCu5, NbNi

to name a few; these compounds are now widely referred to as the Frank-Kasper phases)

could be understood as representations of tetrahedral close packings. The entire crystal

structure was composed of approximately equilateral tetrahedra. A majority of the bonds

are five-fold, with the remaining bonds begin six-fold (these phases have no four-fold bonds).

Frank and Kasper also presented a simple and important topological argument which showed

that no particle could have five-fold bonds and just a single six-fold bond emerging from it.

In other words, the six fold bonds must form defect lines which run through the entire crystal

structure. A particle with a single defect line running through it would then have two six

fold bonds emerging from it and have a co-ordination shell of 14 particles (Fig 8a). Frank

and Kasper also showed that three or four defect lines could meet at a point; the particle

at the intersection of the lines would then have co-ordination shells of 15 or 16 particles
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respectively (Fig 8b and 8c). Examples of 12,14,15, and 16 co-ordinated particles occur in

the Frank-Kasper phases.

Nelson [9] argued that the defect line analysis of Frank and Kasper could be extended

to provide a description of supercooled liquids and metallic glasses. It is a remarkable fact

that most of the metallic alloys which from metallic glasses also form stable intermetallic

compounds with a Frank-Kasper like structure [12, 13, 14] (this point will be discussed

further in Section 5.4.2). However as the computer simulations clearly show, random close-

packings also have four-fold bonds which are absent in the Frank-Kasper phases. Using

modern topological methods [15], Nelson extended the arguments of Frank and Kasper to

include four-fold defect lines. He showed that, like the six-fold bonds, the four-fold bonds

could not end at a point and must be part of defect lines. Two, three and four four-fold

bonds can meet at a particle, making that particle eight, nine and ten co-ordinated (Fig 9).

Super-cooled liquids and metallic glasses therefore form a tangled network of defect lines:

an ordered arrangement of defect lines leads to the Frank-Kasper phases.

5.3 Structure factor of monoatomic supercooled liquids

In this section we shall review recent work on constructing a Landau free energy of a dense

supercooled liquid of spheres interacting with a pair-potential with a repulsive hard-core and

a weak long-range attraction. A gaussian approximation to the Landau free energy will then

be used to calculated the experimentally measurable structure factor.

5.3.1 Sphere packings in curved three-dimensional space

A crucial first step in the analysis of any frustrated system is the understanding of the

related unfrustrated system which is perfectly ordered. The unfrustrated system can then

be used to define an order parameter, which is in turn used to characterize the unfrustrated
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system. The ideal, unfrustrated system associated with random close packing of spheres

was first identified by Coxeter [16]. He noted that on the three-dimensional surface of a

four-dimensional sphere five perfect tetrahedra can be arranged around a bond with no gap

left between the first and last tetrahedron i.e. the gap in Fig 5 vanishes on this positively

curved three-dimensional space. The entire surface of the sphere can be tiled with 600

perfect tetrahedra, with every tetrahedron being equivalent to any other. Every bond has

exactly five perfect tetrahedra around it and every particle sits at the center of a perfect

icosahedron. This packing of particles of the surface of a surface is known as polytope

{3,3,5}. The curvature of the sphere κ, which is the inverse of the radius of the sphere, is

related to the near neighbor distance d by

κd =
π

5
(1)

This tiling of particles can be considered as the analog of the triangular lattice in two

dimensions, with the important difference that it is of finite extent.

Motivated by his analysis of polytope {3,3,5}, Coxeter [16] presented a simple ‘mean-field’

analysis of the effects of frustration in flat space. He argued that some of the properties of

dense random packings in flat space could be modeled by a fictitious space-filling polytope

{3, 3, q}, where q is the average number of tetrahedra around a bond. On the surface of a

sphere there are five tetrahedra around every bond, so q is 5. In flat space the dihedral angle

of the tetrahedron is arcos(1/3), so on the average, there is space for

q =
2π

arccos(1/3)

≈ 5.1043 (2)

tetrahedra around every bond. The values of q in simulations of supercooled liquids and in

the Frank-Kasper phases are quite close to this value [9]. Most remarkable is the Frank-
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Kasper phase Mg32(AlZn)49, which has a which approaches the ideal value of q to one part

in 104.

The correlations in polytope {3,3,5} were used as a template for the description of local or-

der in supercooled liquids by Kléman and Sadoc [17], Sadoc [18] and Sadoc and Mosseri [19].

These investigators concentrated upon literal mappings of tetrahedra from curved unfrus-

trated space to a flat frustrated space.

5.3.2 Order parameter

The particular approach to extending Coxeter’s ideas that we shall focus on this chapter was

pioneered by Nelson and Widom [20]. An order parameter will be introduced to measure

the strength of the local icosahedral ordering. With each point in the physical flat three

dimensional space associate a tangent four dimensional sphere. Now project the particle

density in a small averaging volume ∆V upon the surface of the sphere as shown in Fig 10.

This defines a density function ρ(~r, û) at every point ~r in three dimensional space and every

point û on the surface of the tangent sphere at ~r. The physical density which is measured

by X-ray scattering is clearly ρ(~r, û = −1), where û = −1 is the ‘south pole’ of the four-

dimensional sphere. The physical question we wish to answer is: how close is the environment

in the physical flat three dimensional space around any given point ~R to the ideal ordering

in polytope {3,3,5} ? Because of the nature of the projection operation, it is clear that an

equivalent question is: how close is the density ρ(~r = ~R, û), as a function of û near û = −1, to

that of polytope {3,3,5} ? This question is most easily answered by performing an expansion

of the density on the sphere in terms of the hyperspherical harmonics [21]:

ρ(~r, û) =
∑

n,ma,mb

Qn,ma,mb
(~r)Y ∗

n,ma,mb
(û) (3)
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where the Yn,ma,mb
are known hyperspherical harmonics labeled by the representation index

n = 0, 1, 2 . . . and the quantum numbers ma, mb, ranging in integer steps from −n/2 to

n/2, label the basis states within each representation of SO(4). The coefficients Qn,ma,mb
(~r)

are defined on every point ~r of the physical space and characterize the environment in the

neighborhood of the point ~r. They can therefore be considered as a peculiar set of local

multi-particle correlation functions. Let ρ(~r = ~R, û) specify a density, as a function of û on

the surface of the sphere, which is identical to the density on polytope {3,3,5}. A simple

computation [20] then shows that the order-parameter Qn,ma,mb
(~R) is zero for all values of

n except the special values n = 12, 20, 24, 30, 32 . . .. The precise values of ~Qn(~R) depend

upon location and orientation of polytope {3,3,5} on the sphere, but the selection rules on

n are independent of these parameters. The vanishing of ~Qn(~R) on such a large number of

n values is a consequence of the high degree of symmetry of polytope {3,3,5}. The special

set of n values 12, 20, 24, 30, 32 . . . thus form a ‘reciprocal lattice’ distinguishing polytope

{3,3,5} from other particle arrangement on the surface of the sphere. We are now finally in a

position to answer the questions posed earlier in this paragraph. The particle configuration

in the neighborhood of ~R is similar to that in polytope {3,3,5} if the values of ~Qn(~R) are

largest at the following special values of n = 12, 20, 24, 30, 32 . . .. The matrices ~Qn(~r) for

these special values of n are therefore the order parameters that we require. These order

parameters characterize the degree of tetrahedral and five-fold bipyramidal ordering in the

neighborhood of any point in space.

Before we are able to write down a Landau free energy with the order parameter in-

troduced above, we need to understand the optimum relative position of two fragments of

polytope {3,3,5} at neighboring point in space. A simple way achieving the best relative

positions which minimize the number of defect lines was suggested by Sethna [22]. Imagine
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“rolling” the four-dimensional sphere along a straight line in flat three-dimensional space.

The particle configuration laid out by this procedure will consist of mildly distorted tetra-

hedra and not induce any defect lines. In fact the tetrahedra will form a Bernal spiral

shown in Fig 11. (Precisely such spirals exist along the axes of the Kagomé net structure

found in many Frank Kasper phases.) The relative orientation of the order parameter at two

neighboring points along the rolling line can be easily shown to satisfy

~Qn(~r + ~δ) = exp
(
iκLn

0µδµ

)
~Qn(~r) (4)

where Ln
0µ is a (n + 1) × (n + 1) matrix which generates the rotations of SO(4) performed

when the sphere is rolled in the µ direction of flat three dimensional space. One might now

naively guess that it should be possible to tile all of three-dimensional space with fragments

of polytope {3,3,5} by starting at origin and rolling the sphere in a straight line in all

directions. However it can be shown that this procedure always introduces incompatibilities

at points other than the origin. One way to illustrate this frustration is to consider the

operation of rolling the sphere in a closed path along the edges of a square in the µ and ν

directions as shown in Fig 12 5.12. The order parameter configuration before and after the

rolling operations will have the following relationship [22]

~Qn(~r)|final = exp
(
−iκLn

0µa
)

exp (−iκLn
0νa) exp

(
iκLn

0µa
)

exp (iκLn
0νa) ~Qn(~r)|initial

≈ exp
(
−κ[Ln

0µ,L
n
0ν ]a

2
)

~Qn(~r)|initial

= exp
(
−iκLn

µν , a
2
)

~Qn(~r)|initial (5)

where Ln
µν is the generator of SO(4) which performs rotations in the (µ, ν) plane of flat

three-dimensional space. The relative rotations between the initial and final configurations

of the order parameter necessarily imply the presence of a constant density of disclination

defect lines piercing every plaquette in flat three dimensional space. These are precisely the
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four-fold and six-fold bonds introduced earlier; the sign of the rotation above implies an

excess of six-fold bonds over four-fold bonds.

5.3.3 Landau free energy

We now finally have assembled all the ingredients necessary in writing down a Landau

theory of tetrahedral close packing in supercooled liquids. The Landau free energy expansion

performs an expansion in gradients and powers of the order parameter retaining all terms

which are consistent with the symmetry of the system. Because of the strong frustration

inherent in flat three dimensional space we anticipate that the magnitude of ~Q will be small

and that a low-order expansion will be adequate. To quadratic order the free energy takes

the form [20]

F =
1

2

∑
n

∫
d3~r

[
Kn

∣∣∣(∂µ − iκLn
0µ

)
~Qn

∣∣∣2 + rn

∣∣∣ ~Qn

∣∣∣2]+ · · · (6)

where the ellipses denote cubic and higher order terms, and Kn and rn phenomenological

parameters. The gradient term has been chosen such that the system will attempt to satisfy

the ‘rolling-sphere’ relationship (Eqn 4) at every point in space. Apart from this input,

the form of the free energy follows solely from the symmetry requirement that the energy

be independent of the orientation of polytope {3,3,5} defined by the order-parameter ~Qn.

We make the physical input of demanding local regions of polytope {3,3,5} ordering by

demanding that the rn → +∞ except for the selected values n = 12, 20, 24, 30, 32 . . . [23].

Fluctuations in all but these values of n will be strongly suppressed.

Before turning to an analysis of the free energy F , it is useful at this point to recall a

few essential features of a related system - an extreme type-II superconductor in a magnetic

field [24] (by extreme type-II we mean that the London penetration depth is so large that

we can safely ignore the changes in the external magnetic field due to the supercurrents). In
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suitable units, the Landau free energy expansion of the superconducting order parameter Ψ

takes the form:

Fsc =
1

2

∫
d3~r

[
K |(∂µ − iAµ) Ψ|2 + r |Ψ|2

]
+ · · · (7)

where ~A(~r) is the vector potential associated with a uniform external magnetic field ~H

(~∇ × ~A = ~H), K is a phenomenological stiffness, and the parameter r is assumed to have

the form r = r′(T − Tc). The mean-field phase diagram for this system as a function of the

temperature T and H is sketched in Fig 13b. In zero field the system goes superconducting

when r = 0, i.e. at T = Tc. In non-zero fields the frustration induced by the external field

has two consequences: (i) it depresses the transition temperature: i.e. the system does not

go superconducting until r is sufficiently negative; and (ii) the superconducting state in non-

zero field is an Abrikosov flux lattice consisting of a regular array of defect lines (vortices)

at a density which relieves the frustration due to the field.

We now return to the consideration of the physics of icosahedral ordering as described

the free energy F . As discussed earlier, we can turn off the frustration by placing the

particles on the surface of a four-dimensional sphere of radius R [25]. When the curvature

of the sphere κ = 1/R satisfies the condition (1), the system is unfrustrated and we can

replace the ‘covariant’ derivative in Eqn (6) by an ordinary derivative. This unfrustrated

system is the analog of the superconductor in zero field, with the low-temperature ordered

state being polytope {3,3,5}. The parameters rn are presumably close to zero at melting

temperature of polytope {3,3,5}: they are not exactly zero because the presence of cubic

terms in the free energy expansion drive the transition first order. As R moves away from

the ordered value, the melting temperature is depressed and the ordered state becomes a

Frank-Kasper structure consisting of an ordered configuration of defect lines: the phase

diagram is shown in Fig 13a. The Frank-Kasper structures are the analog of the Abrokosov

15



flux lattice in the superconductor. The physical flat three dimensional space is strongly

frustrated, and we presume that sluggish dynamics freezes the system at a temperature Tg

which is above the temperature T ∗
0 , the melting temperature of a suitable Frank-Kasper

structure. We also denote in Fig 13a the melting temperature Tm of the global ground state

of a monoatomic metallic system which is usually a FCC crystal. An important prediction

that can be made from the above considerations is that the parameters rn must be negative

for n = 12, 20, 24, 30, 32 . . . at the glass transition temperature.

We turn finally to the use of the free energy F to make quantitative experimental pre-

dictions [23, 24]. We will calculate the structure factor S(~q),

S(~q) =
∫

d3 ~Rei~q. ~R
〈
ρ(~r = ~R, û = −1)ρ(~r = 0, û = −1)

〉
, (8)

which can be measured easily in electron, X-ray, or neutron scattering experiments. We will

assume that the glassy configuration frozen in as the liquid is quenched can be adequately

described by the equilibrium ensemble defined by F with all cubic and higher order terms

omitted. With this working hypothesis, the structure factor can be easily calculated after

using the relationship (3) between the order parameter and the density. The first step is the

diagonalization of the quadratic form in F ; details of this have been presented in Ref. [24].

The diagonalization yields a spectrum of eigenvalues which depend upon the wave-vector q

and the representation index n. For physically reasonable values of Kn and rn, it is easy to

see [23, 24] that there is a peak in the structure factor for each of the n values 12,20,24,30,32

and that this peak occurs very close to the wavevector q at which the lowest eigenvalue in

the representation n has a minimum as a function of q. Furthermore the relative positions

of the peaks are independent of all parameters in F . In particular the strongest peaks occur
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at the wavevectors q12, q20 and q24 and these wavevectors are predicted to have the ratios:

q20

q12

= 1.71 ;
q24

q12

= 2.04 (9)

We show in Table 5.1 a comparison of these ratios to the ratios between the first, second

and third peaks in the structure factor of vapor-deposited cobalt and iron, and computer

simulations of supercooled liquids: the agreement is remarkably good for q20/q12 but there

are ≈ 2.5% errors in q24/q12. It is argued in Ref. [24] that the effect of higher terms in the

free energy must be of a form which improves the agreement in q24/q12.

Absolute predictions of the peak positions can be made once the parameter κ is known.

Using Eqn (1) this involves knowledge of the hard-sphere diameter d. Using experimentally

known peak positions we obtain a value of d which is within 10% of the interparticle spacing

of crystalline ground states of the relevant atoms. Finally, we can perform a fit to the

entire structure factor by using κ, Kn and rn as adjustable parameters. The results of

such a procedure for amorphous cobalt is shown in Fig 14. We find a fourth peak in the

structure factor which appears to be a composite of q30 and q32. The values of rn can be

determined from the fit, and as expected from the analysis associated with Fig 13, all of

them are negative. We have thus obtained a consistent, phenomenological description of

metallic glasses and supercooled liquids which associates peaks in the structure factor with

symmetry properties of polytope {3,3,5}.

5.4 Application to real metallic glasses

Strictly speaking the calculation outlined above should be applicable only to monoatomic

dense supercooled liquids. All of the metallic glasses manufactured so far have two or more

metallic or metalloid components of differing sizes. Nevertheless the results obtained above

should be of relevance to real metallic glasses for reasons we shall now discuss. All metallic
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glasses can be broadly classified into two categories [14]: (i) the metal-metalloid glasses

consisting of M1−xNx where x is in the range 0.15 - 0.20, M is one or more of transition

metals like Fe, Co, Ni, Pd, Au, and Pt, and N is one or more of metalloids like P , B, Si,

and C; (ii) the metal-metal glasses which contain combinations of metals like Mg, Zn, Ca,

Al, Cu, Ti, La and Ce.

5.4.1 Metal-metalloid glasses

We begin with a discussion of the structure and formation of the metal-metalloid glasses.

Before turning to specific materials we present some qualitative general arguments. In the

spirit of the Landau theory introduced above we can model the effect of the metalloid com-

ponent by a fluctuating impurity concentration field c(~r). The simplest way that c(~r) can

couple to the icosahedral order parameter is via the replacement [23]

F → F +
∫

d3~r

(∑
n

γn| ~Qn|2 +
c2

2χ
− c∆

)
(10)

where χ is the impurity concentration susceptibility, the γn are coupling constants, and

∆ is an impurity chemical potential. The constants ∆ and γn must be positive for the

impurities to disrupt the local icosahedral ordering. We can now integrate out the impurity

concentration and find that the only effect of the field c(~r) is to perform the replacement

rn → rn +
γn∆χ

2
(11)

From the analysis above it is clear that this replacement merely leads to a broadening of the

peaks in the structure factor without significantly changing their positions. This is what is

observed experimentally.

As a typical example of a metal-metalloid glass, we shall consider in detail the Ni − P

system. Shown in Fig 15 is the equilibrium phase diagram of the Ni−P system. Also marked
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is the range of compositions at which the system forms a metallic glass. Note that this range

is centered around the deepest eutectic. This is a universal feature among metal-metalloid

glasses.

The stable crystal structure near the glass formability range is Ni3P . A first step in

understanding the structure of the metallic glass is an analysis of the structure of Ni3P [29].

The space group of the crystal is S2
4 , with each unit cell containing 24 Ni atoms in symmetry

partners of three non-equivalent positions and 8 P atoms in symmetry partners of one

position. We assign nearest neighbor bonds to all Ni−Ni distances which are smaller than

3.58 A and to all Ni− P distances which are less than 2.58 A. These distances are chosen

so that the results are equivalent to a ‘weighted’ [30, 31] Voronoi construction. In Fig 16 we

show the co-ordination shell of P . There are 9 Ni nearest neighbors arranged so that all but

three of the bonds are fiver-fold. These three bonds are four-fold and the entire structure

forms a Z9 defect in the notation of Nelson [9]. The P atom in Ni2P has a very similar

co-ordination shell. It is the small size of the P atom which forces in a small co-ordination

number and four-fold co-ordinated bonds. The partially covalent nature of the Ni−P bond

is also responsible for this structure. The four-fold bonds lead to the presence of distorted

octahedra. However, the shortest diagonal of the octahedron is almost 40% smaller than the

other two, demonstrating that the octahedra are better described as four-fold bipyramids.

The three different co-ordination shells of the Ni atoms are more complicated. They are

shown in Fig 17. The majority of the bonds emanating from the Ni are five-fold, with the

remaining bonds being either six-fold or four-fold. All the four-fold bipyramids associated

with these Ni atoms have at least one P atom on their vertices. The diagonals of the four-

fold bipyramids now differ by only 12% so they are more nearly octahedral. However, as

discussed below, these octahedra occupy only a small fraction of the space in the unit cell.
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In Table 5.2 we display the co-ordination statistics of the Ni and P atoms. In Table 5.3 are

displayed the relative fractions of four-fold, five-fold and six-fold bonds in crystalline Ni3P .

For comparison, we have also displayed the relative fractions of these bonds in the relaxed

Bennett model of Ichikawa [7]. Note the remarkable similarity between the co-ordination

topology of a dense random packing model of identical spheres and that of a packing of two

different sized spheres. In the case of Ni3P , it is the smaller size of the P atom which forces

in an appreciable number of four-fold bonds. The four-fold bonds in the Ichikawa-Bennett

model [7] represent a presence of octahedral ‘voids’ which will probably decrease in number

upon further relaxation.

Experiments of Cocco et. al. [32] measuring the radial distribution function of glassy

Pd1−xBx (which we expect to be structurally very similar to Ni1−xPx) showed a small peak

at
√

2 times the Pd diameter, indicating the presence of four-fold bipyramids. However the

size of the peak decreased with decreasing B concentration [32], indicating that the small size

of the B atom was responsible for the four-fold bipyramids. Recognizing the importance of

the special co-ordination topology of the P atoms, Gaskell [33] has performed a simulation

of the structure of glassy Ni1−xPx. The model consists essentially of a random packing of

phosphorus units having a local environment similar to that of P in Ni3P shown in Fig 16.

Gellatly and Finney [30] performed a Voronoi analysis of this structure using a technique

which recognized the size differences between the atoms. The results of this analysis are

shown in Table 5.3. Again almost 50% of the bonds are five-fold co-ordinated. There is a

larger number of four-fold bonds than in the relaxed Ichikawa-Bennett model, but this is

probably because the constructions constrains every phosphorus environment to be that of

Fig 16. The main conclusion we wish to draw from all of the above arguments is that the

dense random tetrahedral close-packing of spheres remains a good approximation for the
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structure of glassy Ni1−xPx. With the additional broadening of the peak widths the analysis

based upon polytope {3,3,5} remains valid.

As noted earlier most metal-metalloid glasses form at compositions near the eutectic [2].

This can be most simply understood by the fact that there is no stable crystalline structure

at the eutectic composition. Increasing the nickel content in the Ni3P structure will increase

the energy of the crystal drastically because the Ni atoms do not prefer to sit at the smaller

P sites. There may well be exotic metastable crystal structures with larger unit cells at the

eutectic compositions which will accommodate the tendency of the Ni atoms to sit in the

center of icosahedra, and, at the same time, enable the P atoms to maintain their environ-

ment. However, the four-fold defect lines which are forced in by the P atoms act as kinetic

hinderances and lock the system in a metastable glassy state. At even lower P compositions,

the pure crystalline Ni structure is stable enough to prevent glass formation. THe impor-

tance of the high energies of the crystal structure at the eutectic composition was illustrated

by some experiments of Chen [34, 35]. None of the thermodynamic measurements of Chen

indicated any extra structural stability of the glassy structure at the eutectic composition.

5.4.2 Metal-metal glasses

Glasses are formed upon the rapid cooling of many molten metal-metal alloys. These glasses

may be further classified as (i) simple metal - simple metal glasses such as Mg70Zn30,

Ca67Al33, (ii) simple metal - transition metal glasses such as Ca65Pd35, Ti60Be40 and (iii)

transition metal - transition metal glasses such as Nb60Ni40, and Fe55W45. Some rare earth

alloys also form metallic glasses. A universal feature of these alloys in that at these or at dif-

fering compositions they form stable intermetallic compounds which are either Frank-Kasper

or closely related structures. For the alloys mentioned above, the associated Frank-Kasper

phases are MgZn2, CaAl2, CaPd2, Ti2Be17, TiBe2, NbNi and Fe7W6. As we have al-
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ready discussed, all of these crystalline phases are characterized by a tetrahedral network

of near neighbor bonds, with all the tetrahedra being approximately equilateral. This sup-

ports the conjecture that the disordered glassy arrangements of these alloys are described by

tetrahedral close packing. A majority of the bonds will have five tetrahedra around them,

interspersed with a tangled network of lines of six-fold and some four-fold bonds.

In these systems, there are compositions at which the Frank-Kasper phases are very

stable and prevent effective glass formation. The Laves phase, for instance, will form when

one third of the atoms are larger than the rest, the ratio of the radii being in the range 1.1 -

1.3. It is easy to see how requirements of geometrical close-packing of spheres in the Laves

phase forces in this requirement. It is important to note, as pointed out by Hafner [14], that

changes in the atomic diameter in the presence of the other element of the alloy need to be

taken into account. These changes in diameter are controlled by electronegativity differences

between the components: the more electropositive atom shrinks in size. At compositions in

which the larger atom is in the majority, no stable crystalline structure will form, and the

ease of glass formability will increase. In this regard, a calculation performed by Hafner [14]

upon the Ca −Mg system is of particular interest. Using a self-consistent pseudopotential

method, Hafner estimated the total energies of Ca−Mg Laves phase and the metallic glass

as modeled by a relaxed Finney structure. Remarkably, the energy of the glassy structure

was a minimum at the same composition as the CaMg2 Laves phase. This nonetheless did

not include the range of glass formation. At other compositions near the eutectic, the energy

of the crystalline structure was driven up considerably, leading to easier glass formation.
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5.5 Conclusions

This chapter has reviewed a statistical theory of the packing of identical hard spheres in

flat three dimensional space. The theory begins by identifying the tetrahedral arrangement

of four spheres as an important locally dense arrangement and proceeds to tile all space

with the tetrahedra. Such a task is well known to be impossible for equilateral tetrahedra

and distortions are inevitably introduced. Five tetrahedra can pack around a bond with a

minimum of distortion (Figure 2). An attempt to continue this five-fold structure to all of

space runs up against further geometric obstacles and one finds that six-fold (Fig 6) and

four-fold (Fig 7) must be introduced. An orientational/translational order parameter was

then introduced to measure the amplitude and the orientation of the five-fold bipyramids

(Fig 2). This rather complicated multi-particle order parameter was defined by comparing

the local environment in the neighborhood of any point with that of an ideal packing of

spheres (polytope {3, 3, 5}) on a uniformly curved three dimensional space. In this latter

packing the curvature of the space has been carefully chosen to allow for a tiling with

identical equilateral tetrahedra, thus relieving the frustration of flat three dimensional space.

We emphasize that this curved space is used only as a mathematical tool to generate the

bond orientational order parameter which describes sphere packings in the physical flat

three dimensional space. A Landau free energy was introduced to describe fluctuations of

this order parameter in a manner which incorporated the frustration inherent in flat space.

The frustration induced disclinations in the order parameter which were identified with the

four-fold and six-fold bipyramids. Finally the Landau free energy was used to calculate the

structure factor of the hard sphere packing. Parameter free predictions were made for the

ratio of the peak positions of the structure factor which were in rather good agreement with

experimental measurements on amorphous metallic films. To our knowledge this is the first
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theory to present a direct calculation and physical interpretation of the peaks in the structure

factor. All existing computer simulations have focussed mainly on the peaks in the radial

distribution function, which is a Fourier transform of the structure factor.

The second part of this chapter dealt with the application of these results to realistic

metallic glasses which always contain combinations of metallic/metalloid atoms of different

sizes. It was argued that peak position in the structure factor of these glasses should be

insensitive to the presence of atoms of slightly differing radii: the main effect of the alloying

should be a broadening of the peaks, an effect which is borne out experimentally. Monoatomic

metallic glasses do not form because of the presence of low crystalline structures with cubic

symmetry which pre-empt glass formation. With the introduction of atoms of different

sizes these crystalline structures are destabilized and the system is able to access a glassy

state. The main shortcoming of our approach is the lack of a precise criterion for the

conditions which enhance glass formability. This question has however been addressed with

first-principles electronic structure calculations by Hafner [14]

The ideas discussed in this chapter can be applied to other properties of metallic glasses:

these include electronic structure [36], phonon density of states [37] and viscous relax-

ation [38]. The reader is referred to the original papers for details. In the following chapter

Jaric will discuss a different, but closely related, formulation of the bond orientational order

parameter and its coupling to translation symmetries and quasicrystalline order.
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Theory Amorphous cobalt [26] Amorphous Iron [27] Simulations [28]
q20/q12 1.71 1.69 1.72 1.7
q24/q12 2.04 1.97 1.99 2.0

Table 5.1.

Comparison of the theoretical predictions from the free energy F for the ratio in the

peak-positions of the structure factor with experimental measurements on vapor-deposited

iron and cobalt and computer simulations on monoatomic supercooled liquids.

Atom v4 v5 v6 Z
P 3 6 0 9

NiI 1 10 4 15
NiII 3 6 7 16
NiI 3 6 5 14

Table 5.2.

Co-ordination statistics for the P and Ni atoms in Ni3P . The number of n-fold bonds

emanating from an atom is represented by vn. The total co-ordination number of the atom

is Z.

Structure f4 f5 f6 q
Ni3P 18 52 30 5.12

Ichikawa-Bennett 16 53 27 4.91
Gaskell 27 49 18 4.61

Table 5.3.

Distribution of four-fold, five-fold and six-fold bonds in various structures. The percentage

of n-fold bonds is represented by fn and q is mean number of tetrahedra around a bond.
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Figure 1: State of minimum energy for four particles : the tetrahedron.

Figure 2: State of minimum energy for seven particles : five-fold bipyramid.
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Figure 3: State of minimum energy for thirteen particles : the icosahedron.
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Figure 4: Local minimum of energy for six particles : the octahedron.
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Figure 5: Five perfect tetrahedra around a bond. Note the empty space of 7.4 degrees which
is left over.

Figure 6: A six-fold bipyramid. The bond in the center is identified as a -72 degree discli-
nation.
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Figure 7: A four-fold bipyramid. The bond in the center is identified as a +72 degree
disclination.
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Figure 8: Fourteen, fifteen and sixteen co-ordinated particles. The figures on the right
indicate the six-fold disclination lines emanating from the central atom.
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Figure 9: Eight, nine and ten co-ordinated particles. The figures on the right indicate the
four-fold disclination lines emanating from the central atom.
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Figure 10: Schematic showing the projection of a configuration of particles onto a tangent
sphere.

Figure 11: Tetrahedra forming a Bernal spiral.
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Figure 12: Rolling the sphere around a closed loop. The final state of the order parameter
is related to the initial state by a rotation about an axis perpendicular to the plane of the
loop.
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Figure 13: (a) Hypothetical phase diagram of simple fluids with short-range icosahedral
order as a function of temperature and “curvature”, i.e. d/R. T0(d/R) is the mean field
instability temperature of the liquid towards a Frank-Kasper like crystal. Its value in flat
space is T ∗

0 . Tm is the melting temperature of a FCC lattice. Since N < ∞, the transitions
at finite curvature will, of course be smeared by finite size effects. (b) Phase diagram of
an extreme type-II superconductor in a magnetic field. Tc is the critical temperature in the
absence of a magnetic field and Tc2(H) is the locus of transitions into an Abrikosov flux
lattice.
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Figure 14: A comparison of the structure factor obtained by fitting the theoretical prediction
to the experimental data on amorphous cobalt films obtained by Leung and Wright. [26]
There are two adjustable parameters for each peak which determine its width and height.
The peak positions are however a consequence of the theory.
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Figure 15: Phase diagram of the Ni−P system. Also indicated is the range of compositions
over which rapid cooling from the melt forms a glass.
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Figure 16: Co-ordination shell of the P atom in Ni3P . The topology of this shell is identical
to the Z9 defect in Fig 5.9. We denote the number of n-fold bonds emanating from the
central P atom by vn; we have v5 = 6, v6 = 0, and v4 = 3.
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(a)

(b)

(c)

Figure 17: Co-ordination shell of the (a) NiI (v5 = 10, v6 = 4, v4 = 1), (b) NiII (v5 = 6,
v6 = 7, v4 = 3), (c) NiIII (v5 = 6, v6 = 5, v4 = 3) atoms in Ni3P .
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