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Abstract. I begin with a review of quantum impurity models in condensed matter
physics, in which a localized spin degree of freedom is coupled to an interacting
conformal field theory in d = 2 spatial dimensions. Their properties are similar
to those of supersymmetric generalizations which can be solved by the AdS/CFT
correspondence; the low energy limit of the latter models is described by a AdS2
geometry. Then I turn to Kondo lattice models, which can be described by a mean-
field theory obtained by a mapping to a quantum impurity coupled to a self-consistent
environment. Such a theory yields a ‘fractionalized Fermi liquid’ phase of conduction
electrons coupled to a critical spin liquid state, and is an attractive mean-field theory of
strange metals. The recent holographic description of strange metals with a AdS2×R2

geometry is argued to be related to such mean-field solutions of Kondo lattice models.
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1. Introduction

The ‘strange metal’ is a non-zero temperature phase of electrons in solids which appears

to be a common to most ‘correlated electron’ compounds. These are compounds with

transition-metal or rare-earth elements with a crystal structure which often promotes
electronic transport primarily within a single two-dimensional layer of atoms. The

strange metal is typically found at temperatures (T ) above low temperature phases

which display antiferromagnetism and superconductivity. It is defined as ‘strange’

because the temperature and frequency dependence of many observables deviate

strongly from those expected from conventional Fermi liquid theory: most famously,

the resistance increases linearly with T , over a wide range of T values. While
the cuprate high temperature superconductors are the most prominent compounds

displaying strange metal behavior [1], similar regimes are also found in ruthenium oxides

[2], iron pnictides [3], organic metals [4], and heavy-fermion compounds [5].

The AdS/CFT correspondence was originally discovered as a tool for describing

strongly-coupled gauge theories [6]. In D = 4 spacetime dimensions, Yang Mills gauge

theory with N = 4 supersymmetry (abbreviated as SYM4) is characterized by a single
dimensionless coupling constant which remains invariant under the renormalization

group (RG). Consequently, the theory is conformally invariant for all values of the

coupling, and can be viewed as the simplest interacting conformal field theory in D = 4

spacetime dimensions: a CFT4. With a SU(M) gauge group, this theory was argued

to be equivalent to a string theory on an AdS5 × S5 background, where AdS is anti-

de Sitter, a symmetric space with constant negative curvature. More usefully, in the
M → ∞ limit for the low energy physics, the string theory can be approximated simply

by classical Einstein gravity on AdS5. Thus, remarkably, correlations of gauge theories

in D = 4 can be related to properties of the Einstein gravity in a negatively curved

space in D = 5. The latter space has an emergent dimension, which can be interpreted

as a RG energy scale.

CFTs also arise in condensed matter physics in many different contexts. In

Section 2, we will briefly review the CFT3s arising near the quantum critical points of
certain quantum antiferromagnets in d = 2 spatial dimensions. It was argued in Ref. [7]

that such CFT3s could also be usefully analyzed via the AdS/CFT correspondence.

In D = 3, a supersymmetric analog of the CFT3s in Section 2 is Yang-Mills theory

with N = 8 supersymmetry and a SU(M) gauge group (SYM3), and this maps in the

M → ∞ limit to gravity on AdS4. Unlike the D = 4 case, the coupling constant of

SYM3 flows generically to a strong-coupling fixed point, and so there is no free coupling
and the low energy physics is conformal. Thus it is always ‘quantum critical’, and it is

the first solvable strongly-interacting quantum critical theory in D = 3. The condensed

matter CFT3s of Section 2 also have strongly interacting quantum critical points, many

of whose properties have resisted accurate solution by other available methods. Even

though they are not realized as the large M limit of a non-Abelian gauge theory, it

was argued [7] that they could be modeled via the AdS/CFT correspondence. In this
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context, it should be kept in mind that the operator content of the strongly-coupled

fixed point of SYM3 is far removed from the non-Abelian gauge fields in terms of which

it was written down at high energy scales; thus its quantum critical physics is no more

the physics of non-Abelian gauge fields than that of the models of Section 2. Indeed,

it is not unreasonable to view SYM3 at small M as a supersymmetric generalization

of the famous classical D = 3 Ising model at its critical point. Such applications
of the AdS/CFT correspondence to CFTs in condensed matter have been reviewed

by the author in other articles [8, 9], and so will not be explored here. In a recent

paper [10], we have argued that the AdS/CFT results can yield useful information for

the frequency and temperature dependence of transport co-efficients which have been

studied in experiments in a variety of condensed matter systems.

The CFTs discussed so far, and those in Section 2, are states of quantum matter
which are effectively at zero density. Their low energy spectrum is relativistic and

particle-hole symmetric, similar to that found in e.g. pure, undoped graphene. To access

states analogous to the strange metal, we have to study quantum matter at non-zero

density. We do this by turning on a chemical potential, µ, which couples to a globally

conserved charge of the CFT; we choose µ = 0 to correspond to the zero density state.

As long as |µ| $ T , the AdS/CFT correspondence can be extended straightforwardly,
and many new results for quantum-critical transport in condensed matter have been

obtained by this method [11]. These have also been reviewed elsewhere [8, 9], and will

not be discussed further here.

We turn, finally, to states of non-zero density quantum matter at low temperature,

which have T $ |µ|. Here, even for the supersymmetric CFTs at large M , the

application of the AdS/CFT correspondence is not immediate. The CFT has scalar fields

with exactly flat directions in their potential, and when placed at a non-zero µ at T = 0
these flat directions appear to lead to an instability of the theory. Nevertheless, one can

presume that the strongly coupled CFT at non-zero µ continues to have a gravitational

description in the AdS language. In the absence of a precise derivation of the theory

on AdS, the spirit of effective field theory can be used to postulate a phenomenological

action on AdS, which then predicts interesting new physics in the doped-CFT at low

T . Just such a strategy has been used in a large number of recent studies. Two broad
classes of states have been obtained by this method. States in one class display the

condensation of a charged [12, 13, 14, 15] or a neutral [16, 17] scalar field; we will not

study this class here. States in the second class have no broken symmetries and display

evidence of metallic behavior and Fermi surfaces [18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Interestingly, the Fermi surface quasiparticles have non-Fermi liquid damping, and the

resistance can have a linear dependence on T for a particular value of an effective
parameter i.e. the AdS theory at non-zero µ leads to a holographic description of the

strange metal.

However, many key properties of the holographic strange metal so obtained are

quite mysterious from a condensed-matter perspective. For a CFTD, the AdSD+1

theory at non-zero µ factorizes [21] at low energies to a AdS2 × RD−1 geometry, and
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this factorization is a key determinant in the unusual properties of the Fermi surface.

One immediate consequence is that the singular features in the quasiparticle energy

depend primarily on the frequency ω, and this quantum criticality is described by the

AdS2 geometry alone: thus crucial information on the spatial dependence of the strange

metal quantum fluctuations appears to be missing. Related to this is the troubling

presence of a non-zero entropy density which survives the T → 0 limit, thus apparently
violating the third law of thermodynamics. Finally, the underlying field content leading

to this holographic metal phase is not clear.

This paper will review and give additional perspective on a recent proposal [28]

connecting Kondo lattice models to the holographic strange metal. We will do this

here by adding matter degrees of freedom to the zero density CFT ‘one-at-a-time’. As

noted above, we begin in Section 2 by describing how CFTs arise in two-dimensional
quantum antiferromagnets. In Section 3 will add a single spin degree of freedom to

the CFT: models of this type can be reliably addressed both by traditional condensed

matter methods, and in supersymmetric cases by the AdS/CFT correspondence. We

will find a close correspondence in the physical properties in the two cases, including an

emergence of AdS2 in the gravitational description. Thus in the single impurity context,

a satisfactory physical interpretation of the AdS2 geometry will be obtained.
Then we will turn to Kondo lattice models and their holographic interpretation in

Section 4. In the limit of large dimension, or long-range exchange interactions, such

models can be solved by a mapping to a quantum impurity model coupled to a self-

consistent environment. The mean-field solution describes a ‘fractionalized Fermi liquid’

(FFL or FL*), with a Fermi surface of conduction electrons coupled to a critical spin

liquid. We will argue that such a solution has a close correspondence to the holographic

theory with the AdS2 × RD−1 geometry. This description of the holographic theory
leads to simple interpretations of its physical properties. For the Kondo lattice, the

mean-field theory of the critical spin liquid does not have collective gauge excitations

which are generically expected to realistic spin liquid with finite-range interactions. The

holographic theory reaches a similar mean-field but without infinite range interactions:

thus it is likely to be amenable to systematic improvements. We hope such improvements

will eventually lead to a description of realistic spin liquids and FL* states.

2. Quantum antiferromagnets and CFT3s

We begin with a brief review of the connection between lattice quantum antiferromagnets

in d = 2 and CFT3s, also reviewed in [9]. The lattice antiferromagnets are described by

the Heisenberg exchange Hamiltonian

HJ =
∑

i<j

JijŜ
a
i Ŝ

a
j + . . . (1)

where Jij > 0 is the antiferromagnetic exchange interaction and Ŝa
i (a = x, y, z)

are S = 1/2 spin operators on the sites, i, of a regular lattice: thus they obey the
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Figure 1. The dimer antiferromagnet. The full red lines represent an exchange
interaction J , while the dashed green lines have exchange J/g. The ellispes represent
a singlet valence bond of spins (| ↑↓〉 − | ↓↑〉)/

√
2.

commutation relations

[Ŝa
i , Ŝ

b
j ] = iεabcδijŜ

c
i (2)

and
∑

a(Ŝ
a
i )

2 = 3/4 for each i.

Different phases, quantum phase transitions and low energy field theories are

obtained depending upon whether there are an even or an odd number of S = 1/2

spins per unit cell of the lattice.

2.1. Even number of S = 1/2 spins per unit cell

Let us consider first the simpler case of an even number of S = 1/2 spins per unit cell.

The canonical model is the dimer antiferromagnet, illustrated in Fig. 1. The S = 1/2

spins reside on the sites of a square lattice, and have nearest neighbor exchange equal

to either J or J/g. Here g ≥ 1 is a tuning parameter which induces a quantum phase

transition in the ground state of this model. At g = 1, the model has full square lattice
symmetry, and this case is known to have a Néel ground state which breaks spin rotation

symmetry. This state has a checkerboard polarization of the spins, just as found in the

classical ground state, and as illustrated on the left side of Fig. 1. It can be characterized

by a vector order parameter ϕa which measures the staggered spin polarization

ϕa = ηiS
a
i (3)

where ηi = ±1 on the two sublattices of the square lattice. In the Néel state we have

〈ϕa〉 ,= 0, and we expect that the low energy excitations can be described by long

wavelength fluctuations of a field ϕa(r, τ) over space, r, and imaginary time τ . On

the other hand, for g - 1 it is evident from Fig. 1 that the ground state preserves all
symmetries of the Hamiltonian: it has total spin S = 0 and can be considered to be a

product of nearest neighbor singlet valence bonds on the J links. The simplicity of this

large g ground state relies crucially on the ‘dimerized’ structure of the Hamiltonian; the

fact that there are an even number of S = 1/2 spins per unit cell.
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It is clear that the g = 1 and g - 1 states are qualitatively distinct, and so there

must be a quantum phase transition at a critical g = gc. We can deduce the quantum

field theory for this phase transition by using conventional Landau-Ginzburg arguments:

we use the order parameter ϕa, and write down the simplest continuum action consistent

with the symmetries of the Hamiltonian; this leads to the partition function

Z =

∫

Dϕa(r, τ) exp

(

−
∫

d2rdτ Lϕ

)

Lϕ =
1

2

[

(∂τϕa)2 + v2(∇ϕa)2 + s(ϕa)2
]

+
u

4

[

(ϕa)2
]2

(4)

The transition is now tuned by varying s ∼ (g − gc). Notice that this model is
identical to the Landau-Ginzburg theory for the thermal phase transition in a d + 1

dimensional ferromagnet, because time appears as just another dimension. From this

we conclude that the quantum phase transition is described by the famous Wilson-

Fisher fixed point of Eq. (4). This was originally discovered by an analysis of the theory

in D = 4 − ε spacetime dimensions, using ε as an expansion parameter. Since then,

extensive numerical and analytical studies have shown that the fixed point is present
also in D = 3, where it describes a non-trivial CFT3. For the dimer antiferromagnet,

very convincing evidence that the quantum criticality is described by the Wilson-Fisher

CFT3 is presented in [29].

In experiments, the best studied realization of the dimer antiferromagnet is

TlCuCl3. In this crystal, the dimers are coupled in all three spatial dimensions, and the

transition from the dimerized state to the Néel state can be induced by application of
pressure. Neutron scattering experiments by Ruegg and collaborators [30] have clearly

observed the transformation in the excitation spectrum across the transition, and these

observations are in good quantitative agreement with theory[31].

2.2. Odd number of S = 1/2 spins per unit cell

For this case, we can work with the Hamiltonian in Eq. (1), but with the Jij respecting

the full space group symmetry of the square lattice. Thus the nearest neighbor Jij must

all be equal to each other, unlike the dimer antiferromagnet above. With no further

range interactions, the ground state has Néel order, as we discussed in Section 2.1. A

variety of routes have been investigated [31] to continuously destroy the Néel order,
and we generically represent them as tuning a coupling g in Fig. 2. The phase so-

reached was argued [32] to have valence bond solid order (VBS). The VBS state is

superficially similar to the dimer singlet state in the right panel of Fig. 1: the spins

primarily form valence bonds with near-neighbor sites. However, because of the square

lattice symmetry of the Hamiltonian, a columnar arrangement of the valence bonds as

in Fig. 1, breaks the square lattice rotation symmetry; there are 4 equivalent columnar
states, with the valence bond columns running along different directions. More generally,

a VBS state is a spin singlet state, with a non-zero degeneracy due to a spontaneously

broken lattice symmetry. A VBS state has been observed in the organic antiferromagnet

EtMe3P[Pd(dmit)2]2 [33, 34].
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Figure 2. A frustrated square lattice antiferromagnet on the square lattice, with
the Hamiltonian preserving the full space group symmetry of the square lattice. The
valence bond solid (VBS) state for g > gc is four-fold degenerate, depending upon the
crystallization pattern of the singlet valence bonds.

A direct transition at g = gc between the Néel and VBS states involves two distinct

broken symmetries: spin rotation symmetry, which is broken only in the Néel state

for g < gc, and a lattice rotation symmetry, which is broken only in the VBS state
for g > gc. The rules of Landau-Ginzburg-Wilson theory imply that there can be no

generic second-order transition between such states. It has been argued that a second-

order Néel-VBS transition can indeed occur [35], but the critical theory is not expressed

directly in terms of either order parameter. It involves a fractionalized bosonic spinor

zα (α =↑, ↓), and an emergent gauge field Aµ. The key step is to express the vector field

ϕa in terms of zα by

ϕa = z∗α(σ
a)αβz

β (5)

where σa are the 2×2 Pauli matrices. Note that this mapping from ϕa to zα is redundant.

We can make a spacetime-dependent change in the phase of the zα by the field θ(r, τ)

zα → eiθzα (6)

and leave ϕa unchanged. All physical properties must therefore also be invariant under

Eq. (6), and so the quantum field theory for zα has a U(1) gauge invariance, much

like that found in quantum electrodynamics. The effective action for the zα therefore
requires introduction of an ‘emergent’ U(1) gauge field Aµ (where µ = x, τ is a three-

component spacetime index). The field Aµ is unrelated the electromagnetic field, but is

an internal field which conveniently describes the couplings between the spin excitations

of the antiferromagnet. As for Eq. (4), we can write down the quantum field theory for
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CFT

Figure 3. A quantum spin coupled via an exchange interaction to a CFT in 2+1
dimensions.

zα and Aµ by the constraints of symmetry and gauge invariance, which now yields

Z =

∫

Dzα(r, τ)DAµ(r, τ) exp

(

−
∫

d2rdτ Lz

)

Lz = |(∂µ − iAµ)z
α|2 + s|zα|2 + u(|zα|2)2 + 1

2w2
(εµνλ∂νAλ)

2 (7)

For brevity, we have now used a “relativistically” invariant notation, and scaled away

the spin-wave velocity v; the values of the couplings s, u, w are different from, but

related to, those in Eq. (4). The Maxwell action for Aµ is generated from short distance
zα fluctuations, and it makes Aµ a dynamical field. This theory has a ‘Higgs’ phase

where zα condenses like the Higgs boson: this we can identify as the Néel state. The

ordinary Coulomb phase with zα gapped appears as a ‘spin liquid’ state with a collective

gapless, spinless excitation associated with the Aµ photon. Non-perturbative effects [32]

associated with the monopoles in Aµ (not discussed here), show that this spin liquid is

ultimately unstable to the appearance of VBS order.
An interesting question now is whether the transition between the Néel and VBS

states as described by (7) is a CFT3. The existence of a CFT3 fixed point has been

established order-by-order in the 1/N expansion, where the spinor index α = 1 . . .N .

However, the issue remains unsettled for N = 2 [36, 37].

For our purposes here, the CFT3s described by Eqs. (4) and (7) are non-

supersymmetric analogs of the CFT3 realized by SYM3. Insights gained from the
AdS/CFT correspondence are described elsewhere [9, 10].

3. Quantum impurity in a CFT

As we discussed in Section 1, we will move away from the zero density CFTs of Section 3

by a adding a single defect localized in space. This will eventually allow us to address

the non-zero density case in the following section.
For the quantum antiferromagnets of Section 3, the simplest interesting defect is a

single spin Ŝa coupled to the antiferromagnet by an exchange coupling, J , as shown in

Fig. 3.

More generally, the configuration of Fig. 3 belongs to a wide class of ‘Kondo’

problems. Usually, the bulk CFT is rather simple: it is a free electron system whose
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Fermi surface excitations form an infinite set of CFT2s of free chiral fermions in 1+1

spacetime dimensions; furthermore only a single CFT2 of the free fermions is coupled

to the impurity. In such cases, all the quantum correlation effects arise solely in the

vicinity of the impurity. In the simplest and most common case of quantum spin coupled

to a Fermi surface, there is no interesting quantum-criticality in the low energy limit.

There are only two fixed points of the RG, J = 0 and J = ∞: at the unstable J = 0
fixed point, the impurity decouples from the bulk CFT, while at the stable J = ∞
fixed point there are only innocuous potential scattering perturbation [38]. However,

the situation becomes far more non-trivial if the bulk fermions acquire an additional

‘channel’ or ‘flavor’ index; then, under suitable conditions, a non-trivial stable fixed

point is obtained at an intermediate J = J∗ [39]. It is the analog of this ‘multi-channel

Kondo fixed point’ [40] which we will explore in this section in the more general setting
of bulk CFTs with interactions in D > 2 spacetime dimensions.

As a first example, let us couple the impurity spin Ŝa to the class of dimer

antiferromagnets described by the field theory (4). We can represent the impurity spin

by a coherent state path integral over the fluctuations of a unit vector na(τ); then the

partition function of the quantum impurity problem becomes

Z =

∫

Dϕa(r, τ)Dna(τ)δ([na(τ)]2 − 1) exp

(

−
∫

dτ Limp −
∫

d2rdτ Lϕ

)

Limp =
i

2
Aadn

a

dτ
+ Jna(τ)ϕa(0, τ) (8)

Here the quantum spin commutation relations in Eq. (2) for the impurity spin are

implemented by the Berry phase term in Limp where Aa is any function of na(τ) obeying
εabc(∂Ab/∂nc) = na. Equivalently, we may represent the impurity spin by a ‘slave’

fermion χα, and then the partition function in Eq. (8) can be written as

Z =

∫

Dϕa(r, τ)Dχα(τ) exp

(

−
∫

dτ Limp −
∫

d2rdτ Lϕ

)

Limp = χ†
α

∂χα

∂τ
+ J χ†

α

[

(σa)αβϕa(0, τ)
]

χβ . (9)

Actually, the partition function in Eq. (9) has a conserved fermion number nχ = χ†
αχα,

and so splits into different sectors labeled by the possible values of nχ = 0, 1, 2. The

mapping to Eq. (8) requires restriction to the sector with nχ = 1; this constraint can be

implemented by a Lagrange multiplier, which we have not written out explicitly.

The quantum impurity problem defined by Eq. (8) or (9) is amenable to a RG

analysis using an expansion in ε = 4 − D. An extensive theoretical study has been
carried out by this method [41, 42, 43], and we now summarize the main results. When

the bulk theory is at the Wilson-Fisher CFT3 fixed point, the impurity coupling J flows

to a stable fixed point at some J = J∗. Some of the characteristics of this fixed point

are:

• The correlations of the impurity fermion χα and the impurity spin Ŝa =

(1/2)χ†
α(σ

a)αβχβ decay with a power-law in time, wtih non-trivial ‘impurity’

exponents which can be computed order-by-order in ε.
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• The impurity response to a uniform external field is characterized by an impurity

susceptiblity which has a Curie form χimp = C/T , where C is a non-trivial universal

number which can be computed in the ε expansion. This response is that of an

‘irrational’ free spin, because C ,= S(S + 1)/3, with 2S an integer.

• There is a finite ground state entropy, Simp, at T = 0. This entropy is also

‘irrational’ because Simp ,= kB ln(an integer).

Extensive numerical studies [44, 45, 46, 47] have also been carried out for the above

quantum impurity problem, and the results so far are in good agreement with the

theoretical expectations.

We also mention here an alternative strong-coupling formulation [48] of the above

quantum impurity coupled to the dimer antiferromagnet described by Lϕ. This
alternative formulation turns out to be suitable for a determination of the universal

critical properties in an expansion in ε = D − 2. For this formulation we turn from the

‘soft-spin’ formulation of the bulk critical theory in Eq. (4), to a ‘hard-spin’ formulation

in terms of a unit-length field na(r, τ). Then, as is well known, the bulk Wilson-Fisher

fixed point is accessed by a D = 2 + ε expansion of the O(3) non-linear σ-model. For

the quantum impurity physics, it has been argued that the fixed length limit requires
that we send the impurity-bulk coupling J to infinity. In other words, the orientation

of the impurity spin Ŝa is fixed to be parallel to that of the bulk field na(r, τ) at r = 0.

Finally, because the impurity spin orientation is fixed, we only need a spinless fermion

χ to account for the presence/absence of the impurity. With this reasoning, we obtain

the partition function

Z =

∫

Dna(r, τ)Dχ(τ)δ([na(r, τ)]2 − 1) exp

(

−
∫

dτ Limp −
∫

d2rdτ Ln

)

Ln =
1

2g

[

(

∂na

∂τ

)2

+ c2(∇na)2
]

Limp = χ†

(

∂

∂τ
− iAτ

)

χ , Aτ ≡ 1

2
Aadn

a(0, τ)

dτ
(10)

where Aa is now a function of na(0, τ), and the gauge potential Aτ is the pullback of Aa

from S2. The conserved fermion number can now only take the values nχ = 0, 1. Here

the restriction to nχ = 1 is trivially implemented because there is only a single fermion

state without a fermion spin index: we simply omit χ from the functional integral,

while including the Wilson line source term exp(i
∫

dτAτ ). The claim [48] is that the

ε = D − 2 expansion of the partition function in Eq. (10) describes the same universal

fixed point as the ε = 4 − D expansion of the partition function in Eq. (9). Notice
that the theory (10) has only a single coupling constant g, and this reaches the same

fixed point as in the bulk theory. The impurities properties are nevertheless non-trivial

and universal, and are entirely a consequence of the Berry phase of the impurity. The

theoretical results from this formulation have been successfully compared to numerical

studies away from the bulk critical point, within the ordered Néel phase [49, 50].
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Next, let us turn to the bulk CFT3 associated with an odd-number of S = 1/2 spins

per unit cell, the CPN−1 model in Eq. (7). Now, there are S = 1/2 excitations zα in

the bulk, and so the impurity spin can be more efficiently screened by the environment.

To the zα, the impurity spin appears as a static external U(1) gauge charge, and so the

bulk+impurity theory takes a form similar to Eq. (10). We have [51]:

Z =

∫

Dzα(r, τ)DAµ(r, τ)Dχ(τ) exp

(

−
∫

dτ Limp −
∫

d2rdτ Lz

)

Limp = χ†

(

∂

∂τ
− iAτ (0, τ)

)

χ (11)

Like Eq. (10), there is no coupling constant associated with the impurity theory, and so

the impurity responses are naturally universal. It should be emphasized that the theory

in Eq. (11) is different from those in Eqs. (9) and (10): the bulk CFTs correspond

to the two cases in Section 2, and so the impurity dynamics is also distinct. The
properties of theory in Eq. (11) have been studied in some detail using the 1/N expansion

[51, 52, 53, 54], and there have also been recent numerical studies of this case [55, 56].

Finally, let us turn to supersymmetric gauge theories, and consider a quantum

impurity problem associated with a bulk CFT of SYM4 with the SU(M) gauge group.

Such a problem was considered recently by Kachru, Karch and Yaida [57, 58]. Their

impurity was represented by a localized fermion χb with b = 1 . . .M a SU(M) color
index. The action for their field theory was

S =

∫

d3rdτ LSYM +

∫

dτ Limp

Limp = χ†
b

∂χb

∂τ
+ iχ†

b

[

(Aτ (0, τ))
b
c + vI (φI(0, τ))

b
c

]

χc (12)

Here Aµ and φI are bulk fields of SYM4 which are adjoints under SU(M), I = 1 . . . 6,

LSYM is the Lagrangian of the bulk SYM4 CFT, and vI is a unit 6-vector determining

the specific choice of the quantum impurity. The similarity of Eq. (12) to Eqs. (9), (10),

and (11) should now be strikingly evident: in all cases we have an impurity localized

fermions, and these are coupled to the bulk CFT by a universal gauge-like coupling.

While the present supersymmetric theory has no direct application to condensed matter
models, it has the advantage of being solvable by the AdS/CFT correspondence in the

limit of M → ∞. Such a gravitational solution has been presented by Kachru et al.

[57, 58], who showed that the low energy physics of the quantum impurity is associated

with a AdS2 geometry in the gravity theory (see also Refs [59, 60, 61]). Further, the

physical properties of the model in Eq. (12) where found to be qualitatively identical to

those listed above for Eq. (9); in particular, the AdS2 solution also has a non-zero ground
state impurity entropy. Thus we may conclude [28] that there is an intimate connection

between the quantum impurity models considered in this section, and quantum gravity

on AdS2.
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Figure 4. The rainbow graphs. The full line is the fermion, and double-dashed line
is the interaction D(τ). Each line, full or dashed, carries a SU(N) index α.

3.1. Large N solution

This subsection will illustrate the above general concepts on quantum impurities by an

explicit solution in a simple limiting case. We will look at a large N limit in which a

fermionic field is a vector of N components. It is also possible to set up a large N limit
which has the character of a matrix-large N [62], but that is not easily solvable and will

not be considered here.

We begin with the theory in Eq. (9), and assume that the bulk field ϕa has

Gaussian correlations. This neglects bulk interactions which are ultimately necessary

for an accurate description of the critical properties; however, this omission will not be

crucial for the calculation discussed below. Ultimately, the justification of non-Gaussian
bulk correlations relies on the large dimension or long-range limit of the models to be

discussed in Section 4 (note that the bulk Gaussian approximation was not made in the

theoretical studies noted above [41, 42, 43, 51, 52, 53, 54]). Anticipating Section 4, we

assume that the correlation of ϕa for the impurity physics are fully characterized by the

2-point correlation
〈

ϕa(0, τ)ϕb(0, τ ′)
〉

= δabD(τ − τ ′) (13)

Integrating out ϕa from Eq. (9), we obtain a ‘local’ partition function which involves a

functional integral over fields that depend only upon τ

Z =

∫

Dχα(τ)Dλ(τ) exp

(

−
∫

dτ

(

χ†
α

∂χα

∂τ
+ iλ(χ†

αχα −N/2)

)

+
2J2

N

∫

dτdτ ′D(τ − τ ′)χ†
α(τ)χ

†
β(τ

′)χβ(τ)χα(τ ′)

)

(14)

where the indices α, β = 1 . . .N = 2. However, we have written the partition function

in a manner so that it can be used for general N , and the limit N → ∞ is well-defined.

Indeed, an explicit solution can be obtained in the large N limit [63], as we now describe.
An examination of the Feynman graph expansion shows that the limit of large N

is dominated by [64] the ‘rainbow’ (or ‘non-crossing’) graphs for the fermion Green’s

function: see Fig. 4. The summation of these graphs can be written analytically in

terms of the following self-consistency conditions on the fermion self energy. As usual,
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we define the fermion Green’s function G by

G(τ)δα
β = −

〈

T χα(τ)χ†
β(0)

〉

, G(ωn) =

∫ 1/T

0

dτeiωnτG(τ) (15)

where T is imaginary-time ordering, and ωn is a Matsubara frequency. This Green’s

function is expressed in terms of the self energy by

G(ωn) =
1

iωn − λ − Σ(ωn)
(16)

where λ is the saddle-point value of iλ. Then, in the large N limit, it is not difficult
to show that the fluctuations of λ about its saddle point can be neglected, and the self

energy is given by

Σ(τ) = 4J2D(τ)G(τ). (17)

Finally, the fermion number constraint nχ = N/2, is equivalent to

G(τ → 0) = −sgn(τ)

2
. (18)

We are now faced with the mathematical problem of solving the Eqs (16,17,18) for

the unknown functions G(τ) and Σ(τ), and the value of λ. While this is not difficult
to do numerically [63] for a general D(τ), we present here an analytic solution in the

limit of low energies for the case of critical correlations in D(τ). When the bulk theory

is a CFT, we expect a power-law decay D(τ) ∼ τ−γ , with γ a critical exponent. We

generalize this to T > 0, with the ‘conformal’ form

D(τ) = A

∣

∣

∣

∣

πT

sin(πT τ)

∣

∣

∣

∣

γ

, −1/T < τ < 1/T (19)

where A is some real constant. This is the general form of a T > 0 correlator at x = 0

for a CFT2, and holds also for Lϕ in the upper-critical dimension D = 4 which is the

only case where the present Gaussian approximation for ϕa correlations is appropriate.

Note that Eq. (19) is supposed to be valid at energies well below the ultraviolet cutoff
∼ J ; in other words, for 1/|τ |, T $ J .

We will now show that the solution of Eqs (16,17,18) has the following form at long

times [63, 65]

G(τ) = B sgn(τ)

∣

∣

∣

∣

πT

sin(πT τ)

∣

∣

∣

∣

ρ

, −1/T < τ < 1/T (20)

and determine the exact values of B and the exponent ρ. Again Eq. (20) holds only

for low energies with 1/|τ |, T $ J . We have used the particle-hole symmetric nature

of the constraint in Eq. (18) to conclude that G should be an odd function of τ . Also,

note that we are not concerned that Eq. (20) does not obey Eq. (18) as τ → 0, because

Eq. (20) does not apply in this limit.
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We can now perform the Fourier transform of Eqs. (17,19,20) to obtain the low

frequency behavior of the Green’s function and the self energy:

G(ωn) = [iBΠ(ρ)]
T ρ−1 Γ

(ρ

2
+

ωn

2πT

)

Γ
(

1− ρ

2
+

ωn

2πT

)

Σsing(ωn) =
[

i4J2ABΠ(ρ + γ)
]

T ρ+γ−1 Γ

(

ρ + γ

2
+

ωn

2πT

)

Γ

(

1− ρ + γ

2
+

ωn

2πT

) (21)

with

Π(s) ≡ πs−12s cos
(πs

2

)

Γ(1− s). (22)

We have noted that the contribution to Σ in Eq. (21) is only the singular low frequency

term, and an additional cutoff-dependent constant has been omitted.
It now remains to determine if the proposed solution in Eq. (21) obeys the Dyson

equation in Eq. (16). We need only obtain agreement in the low frequency limit, where

we find that after canceling λ with the regular part of the self-energy, the Dyson equation

reduces for the singular contributions simply to [63]

G(ωn)Σsing(ωn) = −1. (23)

Note that we have assumed that the bare iωn frequency dependence in Eq. (16) is sub-

dominant to the singular contribution from the self energy in the low frequency limit;

this requires γ < 2. Remarkably, we find that the frequency dependent expressions in

Eq. (21) can indeed satisfy the constraint in Eq. (23) for all ωn provided we choose the
exponent [63, 65]

ρ = 1− γ

2
, (24)

and the prefactor

B =
[

4J2AΠ(1− γ/2)Π(1 + γ/2)
]−1/2

. (25)

Thus we have the surprising conclusion that the innocuous-looking Eqs (16,17,18) which

solve the partition function in Eq. (14) in the large-N limit have a solution which has

a conformally-invariant structure at low energies [65, 66]. We then observe that the

supersymmetric model in Eq. (12) also has correlators which have a conformal structure,

inherited from the AdS2 geometry [21, 67]. This is then further evidence for the striking

connection between the quantum impurity models of this section and the theories of
gravity on AdS2.

It is also useful to collect results for the impurity spin correlation function

C(τ) =
〈

Ŝa(τ)Ŝa(0)
〉

(26)

from the present large N solution. Using the SU(2) relation Ŝa = (1/2)χ†
α(σ

a)αβχβ , and

evaluating Eq. (26) in the large N limit, we find C(τ) = −(N2/2)G(τ)G(−τ), and so

C(τ) =
B2N2

2

∣

∣

∣

∣

πT

sin(πT τ)

∣

∣

∣

∣

h

(27)



Strange metals and the AdS/CFT correspondence 15

where the exponent [63, 68]

h = 2− γ. (28)

Of course, in the large N limit we have h = 2ρ, but we have introduced an independent

exponent h for C(τ) because we expect that at higher orders in 1/N we have h ,= 2ρ.
On the other hand, it has been argued [42] that the exponent relationship in Eq. (28)

is exact , and holds to all orders in the 1/N expansion for the theory in Eq. (14). This

exponent relationship is a consequence of the fact that the Gaussian field ϕa and the

spin operator Ŝa are conjugate operators in the second term of Limp in Eq. (4), and the

co-efficient of this term reaches a fixed-point value in the RG.

Finally, this large N computation can also be used to compute the impurity entropy.
This requires a somewhat more involved computation [65, 66], and will not be presented

here.

4. From a quantum impurity to lattice models

The quantum impurity models discussed in Section 3 now appear to be very well

understood: the results of different expansion methods are consistent with each other,
and with a variety of numerical studies. And for the supersymmetric impurity models,

the AdS/CFT method yields similar results using the geometry of AdS2.

In this section, we move beyond impurity models to a variety of lattice models. In

condensed matter studies, this is done by using various expansion methods or physical

arguments to motivate a specific mean-field decoupling of the quantum lattice model to

a preferred ‘impurity’ spin coupled to a bulk ‘environment’. The resulting mean-field
theory then has a structure similar to the models considered in Section 3. However, now

the ‘environment’ is built out of the same degrees of freedom that yielded the ‘impurity’

spin. This fact leads to an additional self-consistency condition that supplements the

solution of the impurity model; it is their combination which then yields the mean-field

predictions for the quantum lattice model.

As we will see below, the resulting mean-field theory of the lattice model has strong
similarities to the classical gravity theories of AdSD+1 at non-zero µ which were outlined

in Section 1. In the latter theories, the geometry factorizes to AdS2 × RD−1 at low

energies; it is this factorization which will be seen to be related to the ‘impurity’ +

‘environment’ factorization of the condensed matter mean-field theories. A notable fact

is that the factorization is motivated in the gravity theory from a very different reasoning

from that in the condensed matter model. Thus the appearance of similar result in two
very different approximations is quite surprising, and indicates a robustness of the theory

that should be well worth understanding better.

Returning to the condensed matter perspective, let us describe the mapping from

lattice models to self-consistent quantum impurity models. Such a mapping has been

carried out for a variety of models [63, 69, 70, 71, 72, 73, 74], which are all versions of
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the Kondo lattice Hamiltonian

H = HJ +
∑

k

εkc
†
kαc

α
k +

JK

2

∑

i

Ŝa
i c

†
iα(σ

a)αβc
β
i . (29)

Here HJ is a quantum spin model just as in Eq. (1). To these localized spins, we have

added mobile conduction electrons: cαk is the Fourier transform of the electron operator

cαi on site i and εk is the electron dispersion. Finally. JK is the Kondo exchange coupling

between the conduction electrons and the spins.

The most direct mean-field analyses of H appear in lattice models with random
infinite-range exchange interactions [63, 73]: the Jij being independent Gaussian random

variables with zero mean. Note that the disorder is ‘quenched’ i.e. each Jij is

independent of time, but is chosen at random from a Gaussian distribution. However,

similar mean field equations also arise in the large spatial dimension limit of non-random

Kondo lattice models [70, 71, 72, 73, 74].

Such mean field models yield solutions corresponding to the two classes of non-
magnetic metallic states expected in Kondo lattice models [78, 79]:

• A Fermi liquid (FL) with a ‘large Fermi surface’, which can be viewed as arising
from the RG flow to large JK . Here the electrons forming the Ŝa

i spins, along with

the cαi electrons, become part of the Luttinger count which determines the volume

enclosed by the Fermi surface.

• A fractionalized Fermi liquid (FFL or FL*) with a ‘small Fermi surface’, in which

the effects of JK can be accounted for perturbatively. Here the Ŝa spins form a spin

liquid, while the conduction electrons form a Fermi surface whole volume counts

only the density of the cαi conduction electrons.

Let us describe the mean-field structure of the FL* phase so obtained [63, 73]. It

was found that correlations of the spin liquid sector of this phase are described by a

quantum impurity theory which is identical to Eq. (14). However, this theory now has
an additional self-consistency condition that the ‘environment’ spins ϕa are the same

as the impurity spin Ŝa: thus the two-point correlator of ϕa which appears in Eqs (13)

and (14) should be proportional to the two-point correlator of Ŝa in Eq. (26): i.e.

D(τ) ∝ C(τ). (30)

It was further shown that a solution of this self-consistency relation is only possible if

the spectrum is gapless and has a power-law form. Then from Eqs. (19) and (27) we

have the exponent relation

h = γ. (31)

Combining this with the exact relation in Eq. (28) for the quantum impurity model, we

obtain [63]

h = 1. (32)

This is the value that corresponds to ‘marginal Fermi liquid’ behavior [75], as we will

see shortly. The same value of h is obtained in large dimension solution of non-random
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lattice models [72, 74]. The gravity approach does not fix the value of such exponents:

they are related to the mass of fermions in AdSD+1 and these are free parameters in

present analyses.

We have now described a mean-field state, which applies to both random and non-

random models, which is a critical spin liquid. It can be viewed as a large dimension

analog of the ‘Spin Bose Metal’ [76, 77], in that it can be written as a theory of bosons
at non-zero density which do not Bose condense, but form a gapless liquid [63]. This

mean-field state has a non-zero ground state entropy density, which descends from the

entropy of the quantum impurity problem. It is this critical spin liquid which has been

proposed to realize the low energy physics of AdSD+1 in a non-zero chemical potential

µ.

The main claim of Ref. [28] was that the theory of the holographic metal realizes
the FL* phase, in a situation in which the Ŝa

i spins are in the critical spin liquid state

described in Section 3.1. The evidence for this claim so far is the gapless conformal

form of the spin and fermion correlations in Section 3.1, the connection with AdS2

of the impurity models in Section 3, and the non-zero ground state entropy density.

Additional evidence comes from the self-energy of the conduction electrons, cαi . We can

compute the conduction electron self-energy Σc(ωn) in the FL* phase by perturbation
theory in JK ; at second order in JK we have the contribution [73]

Σc(ωn) ∝ J2
KT

∑

εn

∑

k

1

i(ωn + εn)− εk
C(εn)

∝ − iπN0J
2
KT

∑

εn

sgn(ωn + εn)C(εn)

= J2
KT

hΨ(ωn/T ) (33)

where Ψ(ωn/T ) is a scaling function, and N0 is the density of conduction electron states

at the Fermi level. Provided h < 2, this is a non-Fermi liquid form of the electron
self energy. It is also the same result as that obtained for the holographic metal in

Refs. [21, 25]. A similar analysis can be done by the present methods of the transport

properties [73], and again agreement is obtained with the holographic results [21, 25].

For the exponent h = 1 obtained [63] by the self-consistency requirement on lattice

models in Eq. (32), the self energy in Eq. (33) has the marginal Fermi liquid form [75].

5. Conclusion

In conclusion, we note that theory of the FL* phase reviewed here [63, 73], and obtained

by the mapping to quantum impurity models, is an attractive candidate for describing

strange metal phases. At the semi-phenomenological level, it does provide a satisfactory

description of experimental observations. It is indeed quite remarkable and surprising

that a similar theory has now appeared from the very different starting point of the
AdS/CFT correspondence.

However, the quantum-impurity description of the FL* phase is not believed to
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be complete [78, 79]. The spin liquid constituent of this phase should have emergent

gauge excitations (like the Aµ gauge field in Eq. (7)), and these are surely essential for

a complete description of spatial correlations. So it would be interesting to find the

appropriate gauge fields in the holographic theory. In this context, the recent work of

Nickel and Son is notable [80], as they argue that theory of the holographic metal may

indeed be missing such emergent gauge fields.
We also note the interesting recent work of Kachru et al. [58] showing a transition

from a FL* phase to a FL phase using string theory.
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Gvasaliya S N, Mutka H and Boehm M 2008 Phys. Rev. Lett. 100, 205701.
[31] Sachdev S, 24th Solvay Conference on Physics, Quantum Theory of Condensed Matter, Brussels,

Oct 11-13, 2008, Preprint arXiv:0901.4103.
[32] Read N and Sachdev S 1989 Phys. Rev. Lett. 62, 1694.
[33] Tamura M, Nakao A and Kato R 2006 J. Phys. Soc. Japan 75, 093701.
[34] Shimizu Y, Akimoto H, Tsujii H, Tajima A and Kato R 2007 Phys. Rev. Lett. 99, 256403.
[35] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303, 1490.
[36] Sandvik A W 2010 Phys. Rev. Lett. 104, 137204.
[37] Banerjee A, Damle K and Alet F 2010 Preprint arXiv:1002.1375.
[38] Nozières P 1974 J. Low Temp. Phys. 17, 31.
[39] Nozières P and Blandin A 1980 J. Phys. France 41, 193.
[40] Affleck I, 1993 Conformal Field Theory Approach to Quantum Impurity Problems in Field

theories for low-dimensional condensed matter systems: Spin Systems and Strongly Correlated
Electrons, G. Morandi, P. Sodano, A. Tagliacozzo, V. Tognette Eds., Springer, Berlin,
arXiv:cond-mat/9512099.

[41] Sachdev S, Buragohain C and Vojta M 1999 Science 286, 2479.
[42] Vojta M, Buragohain C and Sachdev S 2000 Phys. Rev. B 61, 15152.
[43] Sachdev S 2001 Physica C 357, 78.
[44] Sachdev S, Troyer M and Vojta M 2001 Phys. Rev. Lett. 86, 2617.
[45] Troyer M 2002 Prog. Theor. Phys. Suppl. 145, 326.
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