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O Abstract

Z | discuss a proposed phase diagram of the cuprate supertorslas a function of temperature, carrier concentrasind,a strong
<} ‘magnetic field perpendicular to the layers. | show how thespidiagram gives a unified interpretation of a number of recen
«—| experiments.
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This brief note contains a summary of the key aspects of the
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\‘\T* of proposed phase diagram of the cuprate superconductorsishow
N Strange % in Fig.[, and the central role played by ideas of quantum crit
Fluctuating, %/ Metal ,* icality. A more detailed discussion can be found in anotker r
paired Fermi \ y Large cent review by the author|[1], which also contains more com-
pockets . ' Fermi plete citations to the literature. Here, | will focus on tlentral

surface

physical ideas and highlight support from recent experisien

The phase transitions and crossovers in Eig. 1 appear quite
intricate. However, they can be understood simply by fauysi
first on the quantum critical point (QCP) at doping density,

Xm, temperaturd = 0, magnetic fieldH = 0. As indicated in
Fig.[d, this quantum critical point is pre-empted by the o$e
> superconductivity.

The QCP atx = Xy is a transition between two metallic
(hence the subscript) Fermi liquid phases. At > x, we have
the full symmetry of the square lattice, and a “large” Feruoni s
face metal consisting of a hole-like Fermi surface enclpsie
area 1+ x expected from the Luttinger theorem (this is for hole
R, ot doping; with electron doping, th(_e area e_nclosed is-1x). At

QORkES) QAP T X < Xm We have the onset of spin dgnsﬂy wave (SDW) order,
ENNEWSY and this breaks apart the large Fermi surface into “smalifrfre
pockets. Nevertheless the Luttinger theorem continuesto b
Figure 1: Proposed phase diagram of the cuprates showiniptérlay be-  Obeyed, after accounting for the large unit cell createdhey t
(O ‘tween superconductivity (SC), spin density wave (SDW) praied Fermi sur- ~ SDW order. The ultimate theory of this quantum critical goin

face configuration as a function of carrier densiy, temperature ), and g not fully understood, despite much theoretical attenjij.
magnetic field ) perpendicular to the layers. Full lines are thermal or guan

tum phase transitions, dashed lines are crossovers, aretldioies are guides Strong evidence for the QCP &at= xy, and its associated
to the eye. The phase transitions associated with valenee dmiid (VBS) (or T > 0 crossovers comes from recent experiments on Nd-LSCO
“charge”) and nematic order are not shown. The supercomguotgions are [3 4_]‘ They detected the crossover between “Strange Metal”
colored pink. We have assumed the absence of interlayefiocgupnd so the 'd “El . ired F . kets” . f 1eTh
SDW order is long-ranged only at = 0: it is present in the regions labeled &1 uc.tuatllng palre _efrm'. pockets” regions of fig. 1e
“SDW" and on the thick orange line for< xs. In the blue normal regions, the  latter region is our identification of the popular ‘pseudoga
‘pseudogap’ is betweeic andT*, the ‘Strange Metal' has an in-plane resis- phase|[5], and so the crossover temperatufie'isThe experi-
tivity which is measured to be linear in, and the "Large Fermi surface” has a  \yants jdentifiedr* by deviations from linear resistivity in the
conventionalT  resistivity. . . . . .
in-plane resistance, or by an upturn in the c-axis resfgtignd

showed these were correlated with signatures of changbein t
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area enclosed by the Fermi surface. Further, they were able for such ordering, and their connection to the pseudogapgha
track crossovers down b = 0 by suppressing superconductiv- has appeared in scanning tunnelling microscopy expersgnent
ity by an applied magnetic field. This corresponds to loatin [20,[21].

the QCP along the green line beyond the point M inThe 0 Now let us consider phase diagranfat 0 in thex, H plane.
plane in Fig[. The general structure of the phase transitions here appéeare

Earlier evidence for the QCP at= x,, came indirectly from early theoretic work [22], and indeed motivated The- O por-
Panagopoulos and collaborators [6, 7], who used muon spition of the phase diagram already discussed. A key predictio
relaxation and ac-susceptibility measurements on a sefies of this work was that the shift in the QCP froxp, to xs implies
pure and Zn-substituted hole-doped cuprates to obserassygl the presence of a line of quantum phase transition withiisthe
slowing down of spin fluctuations. This glassy behavior van-phase which connects the poigtto the point M in Fig[L. This
ished above a critical doping which we identifyxas Xp. line marks the onset of long-range SDW order. A number of

Recent thermoelectric and Nern#feet experiments [8] and recent experiments [23,124,125] have presented strongresede
theory [9/10] have also provided support for the Fermi sugfa for this transition, in both LSCO and YBCO.
transformations associated with the QCR at x,. Associated Moving to stronger fields, we loose superconductivity at
measurements of the anisotropy in the Nernstffieient [11] H = Hg and cross into the normal state. The crucial, recent
have been proposed to be explained by the influence of nematibservation of high field quantum oscillations|[26} 27, |28, 2
order in the Fermi surface [12]; this nematic order can be rel30,(31] 32, 33] lead us to identify their small Fermi pockeithiw
garded as a remnant of a fluctuating SDW state, as is suggestse of the normal phase region ok xn, in the x,H plane.
by neutron scattering observations|[13]. Also shown in thex,H plane of Fig[ll is a metal-insulator

Finally, | also note the recent quantum oscillation observatransition to a low-doping SDW insulator. We believe thartr
tions [14] in the electron-doped cuprates, which show istgik  sition is associated with the localization of the small Ferm
direct evidence for the sudden change in Fermi surface area pockets, and is related to a number of experimental observa-
a largeH. We identify this as a signature of tie= 0 green tions [34, 33].
transition line beyond the point M at= xy, in Fig.[d.

Now, let us consider the onset of superconductivitiat O.
This occurs in a dome-shaped region arownedx, [15]. Here
a crucial efect is that the competition between the SC and | oyid like to thank my experimental colleagues, G. Boe-
SDW ordersshifts the position of the SDW-ordering QCP 10 inger 3. C. Davis, B. Keimer, G. Lonzarich, C. Panagopsulo
x = Xs (the subscripsrefers to the presence of superconductiv-g - sepastian and L. Taillefer, for numerous enlightenirg di

ity). Loosely speaking, the competition is for the Fermiaoe: ¢ ssjons. This research was supported by the NSF under grant

both the SDW and SC orders want to induce gaps in the SaM8\MR-0757145, by the FQXi foundation, and by a MURI grant
regions of the Fermi surface. We have presented a theory [13}om AFOSR.

which shows how such a competition leads to the shift in the
position of the QCP.
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