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Abstract. — Using doped semiconductors as a paradigm, the low-temperature magnetic and thermodynamic behaviour of
a disordered system undergoing a metal-insulator transition is described, and compared with various theoretical approaches

from the metallic and insulating phases.

1. Introduction

Progress in the understanding of the properties of
disordered systems undergoing a metal insulator (MI)
transition during the past decade [1] has hinged on
the scaling theory of localization. Following the sem-
inal papers for non-interacting electrons in a disor-
dered medium [2, 3], the role of electron interactions
has been incorporated into the scaling description [4-
7]. These studies suggest that the critical behaviour
at the MI transition in disordered systems depends on
spin-dependent effects (e.g. spin-flip or spin-orbit scat-
tering, magnetic field) which appear as cut-offs in the
scaling equations. This leads to various universality
classes for the critical exponents of the transport coef-
ficients (conductivity, Hall coefficient, etc.). Thus the
magnetic properties of disordered systems near the MI
transition could yield valuable clues towards unravel-
ing the transport behaviour.

Experiments have been performed on a variety of
systems such as (i) doped semiconductors, (e. g. un-
compensated Si:P (Silicon doped with phosphorus)
and compensated Si:P; B); (ii) metal-semiconductor
mixtures (e.g., Au-Ge, Nb-Si) and (iii) magnetic semi-
conductors.

Except for uncompensated silicon [8], the exponent
i characterizing the T = 0, the conductivity onset
g ~ |z —zc|* is p = 1. (Here z is the concentration,
pressure, uniaxial stress, or magnetic field, and z. is
the value at the MI transition).In contrast, uncom-
pensated doped silicon shows a much sharper onset,
with u = 0.5 —0.6. Recent work [9-15] has focussed to-
wards the resolution of this controversy, through mag-
netic and thermodynamic measurements at low tem-
peratures, as well as magnetoresistance data in doped
silicon. Similar measurements on the other systems
would be invaluable in furthering our understanding
of the MI transition and the applicability of scaling
ideas for thermodynamic quantities.

Issues addressed include universal behaviour in the insulating phase, local
moments in the metallic phase, and effects of compensation.

We limit ourselves to doped semiconductors, com-
paring various theoretical scenarios with experiments
on Si:P and Si:P; B. Doped semiconductors are in
some sense the most basic disordered system, be-
cause the impurity electron is in a shallow hydro-
genic ls state, with a Bohr radius ap (~ 20 A in
Si) that is much larger than lattice spacing because
of the large dielectric constant of the host semicon-
ductor. Consequently, it is well modelled as an ensem-
ble of hydrogen atoms, randomly distributed in three-
dimensional space (i.e. the discreteness of the under-
lying lattice is unimportant at the densities of inter-
est n ~ ne = (1/4as)°). Additional complications due
to mass anisotropy, many conduction band minima
etc., necessary for quantitative calculations, are of lit-
tle concern for the qualitative physics, and so will not
be discussed here.

At low n, each donor impurity electron is bound to
the impurity, in a 1s state; the system behaves mag-
netically as an ensemble of spins with s = 1/2, with
very weak exchange interactions, leading essentially to
a Curie susceptibility x ~ 1/ T. At high densities, on
the other hand, the electrons delocalize, and if we were
to take the analogy with lattice systems, we would ex-
pect a Ttindependent Pauli spin-susceptibility. Thus
the low T magnetic behaviour considerably with n.
It is this change, as well as the associated effect on
the low temperature thermodynamics, and its rela-
tion with the MI transition and the electronic trans-
port properties that we wish to discuss in the follow-
ing sections. Section 2 is devoted to the insulating
phase, where we believe we have an approximate the-
ory and a good physical understanding of the magnetic
behaviour. Section 3 discusses recent developments
in our understanding of the behaviour in the vicinity
of the MI transition, implications for the disordered
metal, and the effect of compensation. Finally, in sec-
tion 4, we summarize our conclusions.
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2. The insulating phase

The magnetic character of the insulating phase is by
and large understood by now for the “fruit-fly” of dis-
ordered systems, the random ensemble of hydrogenic
atoms, which is realized in n-doped uncompensated
semiconductors. We will only summarize the results
here and the reader is referred to a previous review
[16] for details. At low densities, deep in the insulat-
ing phase, where charge fluctuations are unimportant
(at low energy scales) the low energy behaviour can be
described in terms of the Heisenberg Hamiltonian:

H= Z J (ri;) Si-S; (1)

J (r), the direct antiferromagretic exchange interac-
tion between pairs of hydrogen atoms varies roughly
as J(r) ~ Jo exp (—2r / aB) . Though the microscopic
J (r) can be calculated only in the low density limit,
we will argue that a similar exchange Hamiltonian with
J (r) varying exponentially with distance describes the
low-energy behaviour throughout the insulating phase,
and experiment suggests that it may also persist some-
what into the metallic phase.

Despite the superficial similarity of equation (1) to
a lattice Heisenberg Hamiltonian, the magnetic char-
acter of the random antiferromagnet is quite different
from that of a lattice of hydrogen atoms (e.g., sim-
ple cubic or bee). For the lattice, the dominant near-
est neighbour interactions would lead to simple Neel
ordering at a temperature Tn ~ J(ro) where 1o is
the nearest neighbour distance, implying an ordered
ground state for arbitrarily small density, n (~ To 3) .
The random antiferromagnet, on the other hand, is
best described as a “valence-bond” insulator, i.e. pairs
of sites coupled strongly to each other form an in-
ert singlet ground state (valence-bond) because of the
large energy gain due to quantum fluctuations in this
spin-1/2 system. That this happens to strongly cou-
pled pairs is not so surprising, because of the wide
distribution of initial (bare) couplings covering many
orders of magnitude in this highly disordered system;
in fact, the necessity of a hierarchical scheme has been
pointed out by a number of workers [17]. What is more
significant is that this wide distribution and hierarchi-
cal scheme works down to extremely low energy scales,
as shown by the numerical renormalization group cal-
culations [18] of Bhatt and Lee (BL). As a result, the
low temperature magnetic and thermodynamic prop-
erties are well described by an ensemble of coupled
pairs of spins with a renormalized distribution Py (J)
of pair couplings J, analogous to that used in the con-
text of the quasi-1d organic systems [19] which are the
one dimensional counterpart of this system. Both ex-
periment and the numerical calculation suggest that
the susceptibility at low temperatures T < 10 K for
densities 0.2n. < n < n. behaves approzimately as
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X (T) ~ T™* where a = 0.6. In the numerical calcu-
lation, o is weakly dependent on T (logarithmically);
however, the experiments are consistent with a con-
stant a over almost three decades in T. (The same sit-
uation is true in the quasi-1d systems). Further, the
experimental x (T) at low T is almost independent of
n as well, strongly suggesting that some sort of fixed
point behaviour has been reached in the entire range
of densities.

Within the hierarchical pair approach, the singular
behaviour of x(T') is viewed as a consequence of an
infrared singularity which develops in the renormal-'
ized pair distribution Pg (J) ~ J~*. Because of this
singularity the low-T thermodynamics in the insulat-
ing phase is dominated by spin excitations, even when
charge (electron-hole) excitations are added, as, for
example, in the Hubbard model with randomly po-
sitioned sites. Indeed, as long as one is in the insulat-
ing state, an effective spin Hamiltonian with exchanges
varying exponentially with distance at long distances is
likely to emerge as the low energy description, though
J (r) is not the bare hydrogenic exchange.

In the non-interacting valence bond picture, all ther-
modynamic properties can be calculated explicitly as
integrals over the distribution Pr (J), and compared
with experiment. The resulting fit in terms of a sin-
gle parameter o (which is motivated by the numerical
studies), and no further adjustable parameters to the
susceptibility [20], specific heat [10], as well as the scal-
ing behaviour of the non-linear magnetization [21] is
very good. Further, by including the interactions be-
tween the spin pairs and hyperfine interactions [22],
a satisfactory agreement can be obtained for the dra-
matic temperature dependence of the ESR line width
and position [23] as well, suggesting that this gives a
good starting point for the spin dynamics as well.

This valence-bond insulator is the disordered coun-
terpart of the RVB picture put forth for the high-T.
superconductors by Anderson et al [24]; however, it
has no “resonance” in the valence bonds. Further, our
result is crucially dependent on the existence of a high
degree of disorder, so that the hierarchy is well-defined,
and it appears not to depend crucially on dimension,
at least for d = 1-3 [18]. Finally, it should be empha-
sized that while this gives a good description, it s a
zeroth order model, from which perturbative expan-
sions may be necessary, depending upon the question
asked; as for example, in the case of spin diffusion [22].

3. Beyond the critical density

The traditional picture of the metallic phase be-
yond n. has been in terms of a Fermi liquid, much
like systems with translational symmetry (fluids and
crystalline solids), especially because at large density,
interaction effects are less important than the one elec-
tron kinetic energy. This would suggest that in the ab-
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sence of magnetic transitions in the insulating phase,
the thermodynamic properties across the MI transition
would be well described by the Brinkman-Rice [25] re-
sult for the MI transition in the half-filled Hubbard
model. Namely, the divergent susceptibility would be
quenched in the metallic phase at low temperatures
at a value x (0) ~ m" / m, with an effective mass, di-
verging as m* ~ (n — n.)”", leading to a divergent x
at n. at T = 0. The same divergence is found for the
specific heat v = C/ T, and the ratio (x / v) is four
times the free electron value. Unfortunately, such a
scenario is not borne out by the experimental results
on Si:P (Fig. 1), which shows x(T) vs. T on a double
logarithmic plot for concentrations on both sides.

It is quite conceivable that properties at low-
temperatures where Fermi liquid theory is supposed to
apply are drastically modified in the presence of dis-
order, and calculations based on perturbative scaling
approaches [5-7] suggest that this is indeed so, partic-
ularly in the absence of spin scattering and magnetic
fields. The RG equations, involve a dimensionless con-
ductance ¢, an action parameter -y2, and a quasiparticle
density of states renormalization 2z, which vary on the
length scale [ as:

dt _ e, 2|, _afl=m
L [4 3( = )ln (1+72)] (2a)

d i
T =g+

a -2 (2b)

1000 T T

\CURIE (n=nc)
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Fig. 1. — Spin susceptibility of Si:P normalized to the Pauli
value as a function of temperature for three values of the
reduced density n/ nc indicated on a double logarithmic
plot. Dashed line is the Curie susceptibility corresponding
to the MI transition density ne.

dz [ Fin s
—_—= = g o — (2¢
T Se(37—1) (2c)
t—2 2 s . +
Here £ = A" "/ Ax" Ny DD, where A i the cut off in
momenturm space, Ny the bare density of states at
the Fermi level, and £ the charge diffusion constant.
Fquations (2) are to lowest order in £ = d — 2, the
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dimensionality above two dimensions, and are appro-
priate for the non-degenerate band case, though simi-
lar equations with slightly different coefficients can be
written down for the degenerate (multi-valley) case.
Identifying the physical conductivity o, specific heat -y
and magnetic susceptibility x as:

o~ATE ) (3a)
v¥= le (3b)
X =Nz(l+72), (3c)

one may show that these equations imply a strong
T-dependent enhancement of both x and v, x ~
T4/ (d4+32) and 4 ~ T3/(d43) 45 T is reduced.
However, at low T the parameters flow to strong cou-
pling, where equations (2) are no longer applicable.
This dependence of x ~ T3 and C = AT ~ T'/?
(for € = 1) are qualitatively in agreement with exper-
imental results (Figs. 1 and 2). However, from equa-
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Fig. 2. — Electronic specific heat of the same three samples
versus temperature. Also shown is the “free electron” (solid
line) and phonon (dashed line) specific heat. Below 1 K,
the specific heat for the insulator (top curve) is consistent
with C ~ T'~* with o = 0.6.

tions (2) and (3), we can also write down equations
for the variation in susceptibility x / Xo, specific heat
v/ 7o, and conductivity o / oo (where symbols with
the subscripts 0 refer to the bare, high temperature
values), in terms of each other, which are independent
of cutoff to lowest order in € and can be integrated
up to (down to) any desired length scale (tempera-
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Fig. 3. — Plot of susceptibility as a function of conductivity
for metallic samples along with results of the scaling theory
for single and multi valley case.

ture). Such implicit plots, which have no adjustable
parameters, except for the starting point at high tem-
perature, are shown in figures 3 and 4a. The vari-
ous symbols represent experimental data [10] from the
two metallic Si:P samples as the temperature is var-
ied, while the two solid curves labelled SV and MV
stand for the non-degenerate (single valley) case, and
the multi-valley case appropriate for silicon. Despite
fitting the results at high temperature, the experimen-

Fig, 4. Plat of the susceptibility wersus specific heat
+ [or metallic samples. In {a) the experimental data are
cempared with the single and multi valley scaling theory,
while (b) compares it with the Brinkman-Rice and the two-
fluid (BL + FL) model. Dashed line is the asymptotic low
temperature result where BL pairs dominate,
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tal data do not fit the theory well, and the fits do not
improve much by changing the starting point for the
RG equation. We mention in passing that with spin
scattering or finite magnetic field, the divergences in x
and v at low T are quenched in the RG equations, so
these would not fit the data even qualitatively.

The large enhancement of x relative to - suggests
a magnetic instability of the Fermi liquid, namely the
formation of local moment (or long-lived quasi local-
ized spin fluctuations). This is found in studies of
the disordered Hubbard model [26], which suggests a
continuity with the thermodynamics of the insulating
phase, where it was dominated by localized spins inter-

acting with each other. Following this line of thought,
we may write a generalization of the results of the in-

sulating phase to include a Fermi-liquid contribution
to v and x in a two fluid model:

v/ v=m"/m+(T/To)™
x/Xo=m"/m+B(T/To)"".

‘We assume an o =~ 0.62, taken from the susceptibility
and specific heat data for the n/ n. = 0.78 sample
(Figs. 1 and 2), independent of n, § = 10.5 from the
spin pair model for o = 0.62, and a mass enhancement
m* / m = 1.3 from earlier measurements [29]. Then
equations (4) contain only one adjustable parameter Tp
(which measures the fraction of localized spins), which
may be eliminated by considering the plot of x / Xo vs.
v/ 7o (as for the scaling theory) where (T /To ) is
an implicit parameter. The resulting curve is shown
in figure 4b as (BL + FL), and clearly fits the data
rather well approaching the BL result at low 7. The
Brinkman-Rice result {BR), where the control param-
eter is the vicinity to the transition, is shown as well.

Finally, in figure 5, we show the Wilson ratio
(x/ Xo)/ {7/ 7o) as a function of temperature T for
the three Si:P samples near n.. The insulating sample
approaches a constant value = 9.3 close to the BL re-

(42)
(4b)

X/x)/ (y 1)
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Fig. 5. — Wilson ratio as a function of temperature for the
three samples and fits using the two-fluid model. Note the
constant value for the insulating sample below T ~ 0.2 K,
close to the Bhatt-Lee model value (dashed line).
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sult of 10.5, and much above the BR value of 4. By ad-
justing T for each sample the solid curves are obtained
from equations (4), implying that the ratio of spins for
the three samples in ascending density, is 20:5:2. (As-
suming nearly 100 % localized in the insulating sample
gives 25 % and 10 % localized spins in the two metallic
samples).

The existence of local moments in the metallic phase
as n — nJ can also be directly inferred from the phos-
phorus NMR measurements [14] which see a dramatic
loss of signal from nuclei coupled to the itinerant elec-
tron gas as n. is approached. Silicon NMR measure-
ments [13, 15] are also consistent with the two-fluid
picture [27, 15]. Bulk magnetization measurements
[11] at higher temperatures and susceptibility measure-
ments [28] have also provided evidence in favor of local
moments in the metallic phase.

The idea of local moments just above n. is quite old
— it was proposed well before the scaling theory on the
basis of susceptibility and specific heat measurements
by a number of workers [29]. What is new is that by
going to lower temperatures and measuring both x and
C on a series of samples, it has been possible to not
only test different theoretical models, but also provide
an idea of the interactions between the local moments
in the poor metal.

A number of questions are raised by the proposition
of local moments in a metal ~ e.g. why do they not get
quenched by a Kondo effect, and what is their effect on
transport properties? It has recently been shown [30]
that for randomly (Poisson) distributed sites, that the
Kondo effect is not capable of quenching the suscepti-
bility even deep in the metallic phase, because of the
presence of rare regions consisting of an odd number of
sites with low density (& n.). The RKKY interaction
between these rare regions is more effective, but still
does not appear to prevent a divergence in x (T') as
T — 0, suggesting a breakdown of a pure Fermi liquid
description. Such effects would clearly be enhanced in
the vicinity of nc; the positionally disordered Hubbard
model has ~ 10 % local moments near n. [26].

The above considerations also give some justifica-
tion for why a description of thermodynamics in terms
of a two-fluid model is appropriate — the exchange be-
tween these moments is much more efficient than that
between the moments and the “itinerant part” of the
electron gas. Nevertheless, the two non-interacting flu-
ids (Eq. (4)) is clearly a zeroth order description.

The local moments provide a T-dependent spin-flip
scattering for transport within a Fermi liquid picture
[31]. Analysis of the magnetoresistance data [12] shows
that in uncompensated Si:P, the spin-flip rate remains
close to kT down to millikelvin temperatures, while
in compensated Si:P; B and Ge:Sb the rate is actually
higher. Recent susceptibility measurements on com-
pensated Si:P; B by ESR show an enhanced suscepti-
bility over uncompensated Si:P. This is entirely consis-
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tent if the spin-flip scattering is due to local moments
— the higher rate corresponds to their larger number,
evidenced by the higher x. (In the one-fluid scaling
theory, on the other hand, large spin-flip scattering
rate implies no divergence in x (T'), contrary to the
stronger divergence seen in experiment.) The differ-
ences in spin-flip scattering may be responsible for the
differences in the conductivity exponent, though incor-
porating the local moments within a scaling theory for
transport is not yet complete.

Finally, the ESR line width at small fields was found
to be proportional to the susceptibility in uncompen-
sated Si : P; this is easier understood in the disordered
Fermi-liquid [9, 32], than in the BL model [22]. How-
ever, this proportionality does not occur in the com-
pensated samples. In fact the slower divergence in
linewidth compared to the uncompensated case cor-
relates very well with the faster divergence of x (T
with a BL picture, and is under investigation.

4. Concluding remarks

Through an extensive effort involving a series of
measurements and theoretical modelling of both trans-
port and thermodynamic properties in doped semicon-
ductors, a consistent picture of the MI transition in
disordered systems seems to be emerging. The data
favour the appearance of local moments in the disor-
dered metal, and a pure Fermi liquid picture of the
disordered metal may break down in a more serious
way than perturbative scaling approaches to the MI
transition (from the metallic side) would suggest. The
effect of the local moments for the thermodynamics is
to form a second component in a two-fluid description
which is the counterpart of the localized valence bonds
(spin pairs) in the insulating phase. For the transport,
they provide spin flip scattering, and their greater
abundance in compensated silicon provides a plau-
sible explanation of the different effective exponents
for the conductivity onset seen in uncompensated and
compensated systems. Thermodynamic and magnetic
experiments on amorphous metal-semiconductor mix-
tures would be invaluable in furthering our under-
standing of the MI transition, and the issue of the
pervasiveness of local moment formation in disordered
metals.
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