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1 Introduction

The study of second-order phase transitions at nonzero temperatures has a
long and distinguished history in statistical mechanics. Many key physical
phenomena, such as the loss of ferromagnetism in iron at the Curie temper-
ature or the critical end-point of CO2, are now understood in precise quanti-
tative detail. This understanding began in the work of Onsager, and is based
upon what may now be called the Landau-Ginzburg-Wilson theory. The con-
tent of this sophisticated theory may be summarized in a few basic principles:
(a) The collective thermal fluctuations near second-order transitions can be
accurately described by simple classical models i.e. quantum-mechanical ef-
fects can be entirely neglected. (b) The classical models identify an order
parameter , a collective variable which has to be treated on par with other
thermodynamic variables, and whose correlations exhibit distinct behavior
in the phases on either side of the transition. (c) The thermal fluctuations of
the order parameter near the transition are controlled by a continuum field
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theory whose structure is usually completed dictated by simple symmetry
considerations.

This article will not consider such non-zero temperature phase transitions,
but will instead describe second-order phase transitions at the absolute zero
of temperature. Such transitions are driven by quantum fluctuations man-
dated by the Heisenberg uncertainty principle: one can imagine moving
across the quantum critical point by effectively “tuning the value of Planck’s
constant, ~”. Clearly quantum mechanics plays a central role at such transi-
tions, unlike the situation at non-zero temperatures. The reader may object
that absolute zero is an idealization not realized by any experimental sys-
tem, and hence the study of quantum phase transitions is a subject only of
academic interest. As we will illustrate below, knowledge of the zero temper-
ature quantum critical points of a system is often the key to understanding its
finite temperature properties, and in some cases the influence of a zero tem-
perature critical point can be detected at temperatures as high as ambient
room temperature.

We will begin in Section 2 by introducing some simple lattice models which
exhibit quantum phase transitions. The theory of the critical point in these
models is based upon a natural extension of the Landau-Ginzburg-Wilson
(LGW) method, and this will be presented in Section 3. This section will
also describe the consequences of a zero temperature critical point on the non-
zero temperature properties. Section 4 will consider more complex models
in which quantum interference effects play a more subtle role, and which
cannot be described in the LGW framework: such quantum critical points
are likely to play a central role in understanding many of the correlated
electron systems of current interest.

2 Simple models

2.1 Quantum Ising chain

This is a simple model of N qubits, labeled by the index j = 1 . . . N . On
each ‘site’ j there two qubit quantum states |↑〉j and |↓〉j (in practice, these
could be 2 magnetic states of an ion at site j in a crystal). The Hilbert
space therefore consists of 2N states, each consisting of a tensor product of
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the states on each site. We introduce the Pauli spin operators, σ̂α
j , on each

site j, with α = x, y, z:

σ̂x =

(
0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
. (1)

These operators clearly act on the 2 states of the qubit on site j, and the
Pauli operators on different sites commute.

The quantum Ising chain is defined by the simple Hamiltonian

HI = −J

N−1∑
j=1

σ̂z
j σ̂

z
j+1 − gJ

N∑
j=1

σ̂x
j , (2)

where J > 0 sets the energy scale, and g ≥ 0 is a dimensionless coupling
constant. In the thermodynamic limit (N → ∞), the ground state of HI

exhibits a second-order quantum phase transition as g is tuned across a
critical value g = gc (for the specific case of HI it is known that gc = 1), as
we will now illustrate.

First, consider the ground state of HI for g ¿ 1. At g = 0, there are two
degenerate ferromagnetically ordered ground states

|⇑〉 =
N∏

j=1

|↑〉j ; |⇓〉 =
N∏

j=1

|↓〉j (3)

Each of these states breaks a discrete ‘Ising’ symmetry of the Hamiltonian–
rotations of all spins by 180 degrees about the x axis. These states are more
succinctly characterized by defining the ferromagnetic moment, N0 by

N0 = 〈⇑| σ̂z
j |⇑〉 = −〈⇓| σ̂z

j |⇓〉 (4)

At g = 0 we clearly have N0 = 1. A key point is that in the thermodynamic
limit, this simple picture of the ground state survives for a finite range of small
g (indeed, for all g < gc), but with 0 < N0 < 1. The quantum tunnelling
between the two ferromagnetic ground states is exponentially small in N (and
so can be neglected in the thermodynamic limit), and so the ground state
remains two-fold degenerate and the discrete Ising symmetry remains broken.
The change in the wavefunctions of these states from Eq. (3) can be easily
determined by perturbation theory in g: these small g quantum fluctuations
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reduce the value of N0 from unity but do not cause the ferromagnetism to
disappear.

Now consider the ground state of HI for g À 1. At g = ∞ there is a single
non-degenerate ground state which fully preserves all symmetries of HI :

|⇒〉 = 2−N/2

N∏
j=1

(
|↑〉j + |↓〉j

)
. (5)

It is easy to verify that this state has no ferromagnetic moment N0 =
〈⇒| σ̂z

j |⇒〉 = 0. Further, perturbation theory in 1/g shows that these fea-
tures of the ground state are preserved for a finite range of large g values
(indeed, for all g > gc). One can visualize this ground state as one in which
strong quantum fluctuations have destroyed the ferromagnetism, with the
local magnetic moments quantum tunnelling between ‘up’ and ‘down’ on a
time scale of order ~/J .

Given the very distinct signatures of the small g and large g ground states,
it is clear that the ground state cannot evolve smoothly as a function of g.
These must be at least one point of non-analyticity as a function of g: for
HI it is known that there is only a single non-analytic point, and this is at
the location of a second-order quantum phase transition at g = gc = 1.

The character of the excitations above the ground state also undergoes a
qualitative change across the quantum critical point. In both the g < gc and
g > gc phase these excitations can be described in the Landau quasiparticle
scheme i.e. as superpositions of nearly independent particle-like excitations;
a single well-isolated quasiparticle has an infinite lifetime at low excitation
energies. However, the physical nature of the quasiparticles is very different
in the two phases. In the ferromagnetic phase, with g < gc, the quasiparticles
are domain walls between regions of opposite magnetization:

|j, j + 1〉 =

j∏

k=1

|↑〉k
N∏

`=j+1

|↓〉` (6)

This is the exact wavefunction of a stationary quasiparticle excitation be-
tween sites j and j + 1 at g = 0; for small non-zero g the quasiparticle
acquires a ‘cloud’ of further spin-flips and also becomes mobile. However the
its qualitative interpretation as a domain wall between the two degenerate
ground states remains valid for all g < gc. In contrast, for g > gc, there is no
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Figure 1: The coupled dimer antiferromagnet. Qubits (i.e. S = 1/2 spins) are
placed on the sites, the A links are shown as full lines, and the B links as dashed
lines.

ferromagnetism, and the non-degenerate paramagnetic state has a distinct
quasiparticle excitation:

|j〉 = 2−N/2
(
|↑〉j − |↓〉j

) ∏

k 6=j

(|↑〉k + |↓〉k) . (7)

This is a stationary ‘flipped spin’ quasiparticle at site j, with its wavefunction
exact at g = ∞. Again, this quasiparticle is mobile and applicable for all
g > gc, but there is no smooth connection between Eq. (7) and (6).

2.2 Coupled dimer antiferromagnet

This model also involves qubits, but they are now placed on the sites, j, of
a two-dimensional square lattice. Models in this class describe the magnetic
excitations of many experimentally important spin gap compounds.

The Hamiltonian of the dimer antiferromagnet is illustrated in Fig 1 and is
given by

Hd = J
∑

〈jk〉∈A

(
σ̂x

j σ̂x
k + σ̂y

j σ̂
y
k + σ̂z

j σ̂
z
k

)

+
J

g

∑

〈jk〉∈B

(
σ̂x

j σ̂x
k + σ̂y

j σ̂
y
k + σ̂z

j σ̂
z
k

)
, (8)

where J > 0 is the exchange constant, g ≥ 1 is the dimensionless coupling,
and the set of nearest-neighbor links A and B are defined in Fig 1. An
important property of Hd is that it is now invariant under the full O(3)
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Figure 2: The paramagnetic state of Hd for g > gc. The state illustrated is the
exact ground state for g = ∞, and it is adiabatically connected to the ground state
for all g > gc.

group of spin rotations under which the σ̂α transform as ordinary vectors
(in contrast to the Z2 symmetry group of HI). In analogy with HI , we will
find that Hd undergoes a quantum phase transition from a paramagnetic
phase which preserves all symmetries of the Hamiltonian at large g, to an
antiferromagnetic phase which breaks the O(3) symmetry at small g. This
transition occurs at a critical value g = gc, and the best current numerical
estimate is 1/gc = 0.52337(3).

As in the previous section, we can establish the existence of such a quantum
phase transition by contrasting the disparate physical properties at large g
with those at g ≈ 1. At g = ∞ the exact ground state of Hd is

|spin gap〉 =
∏

〈jk〉∈A

1√
2

(
|↑〉j |↓〉k − |↓〉j |↑〉k

)
(9)

and is illustrated in Fig 2. This state is non-degenerate and invariant under
spin rotations, and so is a paramagnet: the qubits are paired into spin singlet
valence bonds across all the A links. The excitations above the ground state
are created by breaking a valence bond, so that the pair of spins form a spin
triplet with total spin S = 1 — this is illustrated in Fig 3. It costs a large
energy to create this excitation, and at finite g the triplet can hop from link
to link, creating a gapped triplon quasiparticle excitation. This is similar
to the large g paramagnet for HI , with the important difference that each
quasiparticle is now 3-fold degenerate.

At g = 1, the ground state of Hd is not known exactly. However, at this
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Figure 3: The triplon excitation of the g > gc paramagnet. The stationary triplon
is an eigenstate only for g = ∞ but it becomes mobile for finite g.

Figure 4: Schematic of the ground state with antiferromagnetic order with g < gc.

point Hd becomes equivalent to the nearest-neighbor square lattice antifer-
romagnet, and this is known to have antiferromagnetic order in the ground
state, as illustrated in Fig 4. This state is similar to the ferromagnetic ground
state of HI , with the difference that the magnetic moment now acquires a
staggered pattern on the two sublattices, rather than the uniform moment
of the ferromagnet. Thus in this ground state

〈AF| σ̂α
j |AF〉 = N0ηjnα (10)

where 0 < N0 < 1 is the antiferromagnetic moment, ηj = ±1 identifies
the two sublattices in Fig 4, and nα is an arbitrary unit vector specifying
the orientation of the spontaneous magnetic moment which breaks the O(3)
spin rotation invariance of Hd. The excitations above this antiferromagnet
are also distinct from those of the paramagnet: they are a doublet of spin
waves consisting of a spatial variation in the local orientation, nα, of the
antiferromagnetic order: the energy of this excitation vanishes in the limit of
long wavelengths, in contrast to the finite energy gap of the triplon excitation
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of the paramagnet.

As with HI , we can conclude from the distinct characters of the ground states
and excitations for g À 1 and g ≈ 1 that there must be a quantum critical
point at some intermediate g = gc.

3 Quantum criticality

The simple considerations of Section 2 have given a rather complete descrip-
tion (based on the quasiparticle picture) of the physics for g ¿ gc and g À gc.
We turn, finally, to the region g ≈ gc. For the specific models discussed in
Section 2, a useful description is obtained by a method that is a general-
ization of the LGW method developed earlier for thermal phase transitions.
However, some aspects of the critical behavior (e.g. the general forms of
Eqns (13), (14), and (15)) will apply also to the quantum critical point of
Section 4.

Following the canonical LGW strategy, we need to identify a collective order
parameter which distinguishes the two phases. This is clearly given by the
ferromagnetic moment in Eq. (4) for the quantum Ising chain, and the an-
tiferromagnetic moment in Eq. (10) for the coupled dimer antiferromagnet.
We coarse-grain these moments over some finite averaging region, and at
long wavelengths this yields a real order parameter field φa, with the index
a = 1 . . . n. For the Ising case we have n = 1 and φa is a measure of the local
average of N0 as defined in Eq. (4). For the antiferromagnet, a extends over
the three values x, y, z (so n = 3), and three components of φa specify the
magnitude and orientation of the local antiferromagnetic order in Eq. (10);
note the average orientation of a specific spin at site j is ηj times the local
value of φa.

The second step in the LGW approach is to write down a general field theory
for the order parameter, consistent with all symmetries of the underlying
model. As we are dealing with a quantum transition, the field theory has to
extend over spacetime, with the temporal fluctuations representing the sum
over histories in the Feynman path integral approach. With this reasoning,
the proposed partition function for the vicinity of the critical point takes the
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following form

Zφ =

∫
Dφa(x, τ) exp

[
−

∫
ddxdτ

(
1

2

(
(∂τφa)

2 + c2(∇xφa)
2 + sφ2

a

)

+
u

4!

(
φ2

a

)2
)]

. (11)

Here τ is imaginary time, there is an implied summation over the n values
of the index a, c is a velocity, and s and u > 0 are coupling constants. This
is a field theory in d + 1 spacetime dimensions, in which the Ising chain
corresponds to d = 1 and the dimer antiferromagnet to d = 2. The quantum
phase transition is accessed by tuning the “mass” s: there is a quantum
critical point at s = sc and the s < sc (s > sc) regions corresponds to the
g < gc (g > gc) regions of the lattice models. The s < sc phase has 〈φa〉 6= 0
and this corresponds to the spontaneous breaking of spin rotation symmetry
noted in Eqs. (4) and (10) for the lattice models. The s > sc phase is the
paramagnet with 〈φa〉 = 0. The excitations in this phase can be understood
as small harmonic oscillations of φa about the point (in field space) φa = 0. A
glance at Eqn (11) shows that there are n such oscillators for each wavevector.
These oscillators clearly constitute the g > gc quasiparticles found earlier in
Eqn (7) for the Ising chain (with n = 1) and the triplon quasiparticle (with
n = 3) illustrated in Fig 3) for the dimer antiferromagnet.

We have now seen that there is a perfect correspondence between the phases
of the quantum field theory Zφ and those of the lattice models HI and Hd.
The power of the representation in Eqn. (11) is that it also allows us to get a
simple description of the quantum critical point. In particular, readers may
already have noticed that if we interpret the temporal direction τ in Eqn. (11)
as another spatial direction, then Zφ is simply the classical partition function
for a thermal phase transition in a ferromagnet in d + 1 dimensions: this is
the canonical model for which the LGW theory was originally developed. We
can now take over standard results for this classical critical point, and obtain
some useful predictions for the quantum critical point of Zφ. It is useful to
express these in terms of the dynamic susceptibility defined by

χ(k, ω) =
i

~

∫
ddx

∫ ∞

0

dt
〈[

φ̂(x, t), φ̂(0, 0)
]〉

T
e−ikx+iωt. (12)

Here φ̂ is the Heisenberg field operator corresponding to the path integral
in Eqn. (11), the square brackets represent a commutator, and the angular
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brackets an average over the partition function at a temperature T . The
structure of χ can be deduced from the knowledge that the quantum correla-
tors of Zφ are related by analytic continuation in time to the corresponding
correlators of the classical statistical mechanics problem in d+1 dimensions.
The latter are known to diverge at the critical point as ∼ 1/p2−η where p
is the (d + 1)−dimensional momentum, η is defined to be the anomalous
dimension of the order parameter (η = 1/4 for the quantum Ising chain).
Knowing this, we can deduce the form of the quantum correlator in Eq. (12)
at the zero temperature quantum critical point

χ(k, ω) ∼ 1

(c2k2 − ω2)1−η/2
; T = 0, g = gc. (13)

The most important property of Eq. (13) is the absence of a quasiparticle
pole in the spectral density. Instead, Im (χ(k, ω)) is non-zero for all ω > ck,
reflecting the presence of a continuum of critical excitations. Thus the stable
quasiparticles found at low enough energies for all g 6= gc are absent at the
quantum critical point.

We now briefly discuss the nature of the phase diagram for T > 0 with g near
gc. In general, the interplay between quantum and thermal fluctuations near
a quantum critical point can be quite complicated, and we cannot discuss it
in any detail here. However, the physics of the quantum Ising chain is rel-
atively simple, and also captures many key features found in more complex
situations, and is summarized in Fig 5. For all g 6= gc there is a range of low
temperatures (T . |g − gc|) where the long time dynamics can be described
using a dilute gas of thermally excited quasiparticles. Further, the dynamics
of these quasiparticles is quasiclassical, although we reiterate that the nature
of the quasiparticles is entirely distinct on opposite sides of the quantum
critical point. Most interesting, however, is the novel quantum critical re-
gion, T & |g − gc|, where neither quasiparticle picture nor a quasiclassical
description are appropriate. Instead, we have to understand the influence
of temperature on the critical continuum associated with Eq. (13). This is
aided by scaling arguments which show that the only important frequency
scale which characterizes the spectrum is kBT/~, and the crossovers near this
scale are universal i.e. independent of specific microscopic details of the lat-
tice Hamiltonian. Consequently, the zero momentum dynamic susceptibility
in the quantum critical region takes the following form at small frequencies:

χ(k = 0, ω) ∼ 1

T 2−η

1

(1− iω/ΓR)
. (14)
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T

gc
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Domain wall 

quasiparticles

Quantum

critical
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quasiparticles

Figure 5: Nonzero temperature phase diagram of HI . The ferromagnetic order
is present only at T = 0 on the shaded line with g < gc. The dashed lines at
finite T are crossovers out of the low T quasiparticle regimes where a quasiclassical
description applies. The state sketched on the paramagnetic side used the notation
|→〉j = 2−1/2(|↑〉j + |↓〉j) and |←〉j = 2−1/2(|↑〉j − |↓〉j).

This has the structure of the response of an overdamped oscillator, and the
damping frequency, ΓR, is given by the universal expression

ΓR =
(
2 tan

π

16

) kBT

~
(15)

The numerical proportionality constant in Eqn. (15) is specific to the quan-
tum Ising chain; other models also obey Eqn. (15) but with a different nu-
merical value for this constant.

4 Beyond LGW theory

The quantum transitions discussed so far have turned to have a critical theory
identical to that found for classical thermal transitions in d + 1 dimensions.
Over the last decade it has become clear that there are numerous models,
of key physical importance, for which such a simple classical correspondence
does not exist. In these models, quantum Berry phases are crucial in estab-
lishing the nature of the phases, and of the critical boundaries between them.
In less technical terms, a signature of this subtlety is an important simpli-
fying feature which was crucial in the analyses of Section 2: both models
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had a straightforward g → ∞ limit in which we were able to write down a
simple, non-degenerate, ground state wavefunction of the ‘disordered’ para-
magnet. In many other models, identification of the ‘disordered’ phase is not
as straightforward: specifying absence of a particular magnetic order is not
enough to identify a quantum state, as we still need to write down a suitable
wavefunction. Often, subtle quantum interference effects induce new types
of order in the ‘disordered’ state, and such effects are entirely absent in the
LGW theory.

An important example of a system displaying such phenomena is the S = 1/2
square lattice antiferromagnet with additional frustrating interactions. The
quantum degrees of freedom are identical to those of the coupled dimer an-
tiferromagnet, but the Hamiltonian preserves the full point-group symmetry
of the square lattice:

Hs =
∑

j<k

Jjk

(
σ̂x

j σ̂x
k + σ̂y

j σ̂
y
k + σ̂z

j σ̂
z
k

)
+ . . . (16)

Here the Jjk > 0 are short-range exchange interactions which preserve the
square lattice symmetry, and the ellipses represent possible further multiple
spin terms. Now imagine tuning all the non-nearest-neighbor terms as a
function of some generic coupling constant g. For small g, when Hs is nearly
the square lattice antiferromagnet, the ground state has antiferromagnetic
order as in Fig 4 and Eqn. (10). What is now the ‘disordered’ ground state
for large g? One natural candidate is the spin-singlet paramagnet in Fig 2.
However, because all nearest neighbor bonds of the square lattice are now
equivalent, the state in Fig 2 is degenerate with 3 other states obtained by
successive 90 degree rotations about a lattice site. In other words, the state in
Fig 2, when transferred to the square lattice, breaks the symmetry of lattice
rotations by 90 degrees. Consequently it has a new type of order, often
called valence-bond-solid (VBS) order. It is now believed that a large class
of models like Hs do indeed exhibit a second-order quantum phase transition
between the antiferromagnetic state and a VBS state—see Fig 6. Both the
existence of VBS order in the paramagnet, and of a second-order quantum
transition, are features that are not predicted by LGW theory: these can only
be understood by a careful study of quantum interference effects associated
with Berry phases of spin fluctuations about the antiferromagnetic state.
We will not enter into details of this analysis here, but will conclude our
discussion by writing down the theory so obtained for the quantum critical
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Figure 6: Phase diagram of Hs. Two possible VBS states are shown: one which
is the analog Fig 2, and the other in which spins form singlets in a plaquette
pattern. Both VBS states have a four-fold degeneracy due to breaking of square
lattice symmetry. So the novel critical point at g = gc (described by Zz) has the
antiferromagnetic and VBS orders vanishing as it is approached from either side:
this co-incident vanishing of orders is generically forbidden in LGW theories.

point in Fig 6:

Zz =

∫
Dzα(x, τ)DAµ(x, τ) exp

(
−

∫
d2xdτ

[
|(∂µ − iAµ)zα|2 + s|zα|2

+
u

2
(|zα|2)2 +

1

2e2
(εµνλ∂νAλ)

2
])

. (17)

Here µ, ν, λ are spacetime indices which extends over the 2 spatial directions
and τ , α is a spinor index which extends over ↑, ↓, and zα is complex spinor
field. In comparing Zz to Zφ, note that the vector order parameter φa has
been replaced by a spinor zα, and these are related by φa = z∗ασa

αβzβ, where σa

are the Pauli matrices. So the order parameter has fractionalized into the zα.
A second novel property of Zz is the presence of a U(1) gauge field Aµ: this
gauge force emerges near the critical point, even though the underlying model
in Eqn (16) only has simple two spin interactions. Studies of fractionalized
critical theories like Zc in other models with spin and/or charge excitations
is an exciting avenue for further theoretical research.
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