
9 Quantum Phases and Phase Transitions
of Mott Insulators

Subir Sachdev

Department of Physics, Yale University, P.O. Box 208120,
New Haven CT 06520-8120, USA, subir.sachdev@yale.edu

Abstract. This article contains a theoretical overview of the physical properties
of antiferromagnetic Mott insulators in spatial dimensions greater than one. Many
such materials have been experimentally studied in the past decade and a half,
and we make contact with these studies. Mott insulators in the simplest class have
an even number of S = 1/2 spins per unit cell, and these can be described with
quantitative accuracy by the bond operator method: we discuss their spin gap and
magnetically ordered states, and the transitions between them driven by pressure
or an applied magnetic field. The case of an odd number of S = 1/2 spins per unit
cell is more subtle: here the spin gap state can spontaneously develop bond order
(so the ground state again has an even number of S = 1/2 spins per unit cell),
and/or acquire topological order and fractionalized excitations. We describe the
conditions under which such spin gap states can form, and survey recent theories
of the quantum phase transitions among these states and magnetically ordered
states. We describe the breakdown of the Landau-Ginzburg-Wilson paradigm at
these quantum critical points, accompanied by the appearance of emergent gauge
excitations.

9.1 Introduction

The physics of Mott insulators in two and higher dimensions has enjoyed
much attention since the discovery of cuprate superconductors. While a quan-
titative synthesis of theory and experiment in the superconducting materials
remains elusive, much progress has been made in describing a number of
antiferromagnetic Mott insulators. A number of such insulators have been
studied extensively in the past decade, with a few prominent examples being
CaV4O9 [1], (C5H12N2)2Cu2Cl4 [2–4], SrCu2(BO3)2 [5, 6], TlCuCl3 [7–10],
and Cs2CuCl4 [11,12]. In some cases, it has even been possible to tune these
insulators across quantum phase transitions by applied pressure [8] or by an
applied magnetic field [3,4,7,9]. A useful survey of some of these experiments
may be found in the recent article by Matsumoto et al. [10].

It would clearly be valuable to understand the structure of the global
phase diagram of antiferromagnetic Mott insulators above one dimension.
The compounds mentioned above would then correspond to distinct points
in this phase diagram, and placing them in this manner should help us bet-
ter understand the relationship between different materials. One could also
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classify the quantum critical points accessed by the pressure or field-tuning
experiments. The purpose of this article is to review recent theoretical work
towards achieving this goal. We will focus mainly on the case of two spatial
dimensions (d), but our methods and results often have simple generalizations
to d = 3.

One useful vantage point for opening this discussion is the family of Mott
insulators with a gap to all spin excitations. All spin gap compounds dis-
covered to date have the important property of being “dimerized”, or more
precisely, they have an even number of S = 1/2 spins per unit cell [13]. In
such cases, the spin gap can be understood by adiabatic continuation from
the simple limiting case in which the spins form local spin singlets within
each unit cell. A simple approach that can be used for a theoretical descrip-
tion of such insulators is the method of bond operators [14,15]. This method
has been widely applied, and in some cases provides an accurate quantitative
description of numerical studies and experiments [10,16]. We will describe it
here in Sect. 9.2 in the very simple context of a coupled dimer antiferroma-
gnet; similar results are obtained in more complicated, and realistic, lattice
structures. Sect. 9.2 will also describe the quantum phase transition(s) ac-
cessed by varying coupling constants in the Hamiltonian while maintaining
spin rotation invariance (this corresponds to experiments in applied pres-
sure): the spin gap closes at a quantum critical point beyond which there is
magnetic order. Section 9.2.3 will discuss some of the important experimen-
tal consequences of this quantum criticality at finite temperatures. A distinct
quantum critical point, belonging to a different universality class, is obtained
when the spin gap is closed by an applied magnetic field—this is described
in Sect. 9.3.

The remaining sections discuss the theoretically much more interesting
and subtle cases of materials with an odd number of S = 1/2 spins per unit
cell, such as La2CuO4 and Cs2CuCl4. A complementary, but compatible, per-
spective on the physics of such antiferromagnets may be found in the review
article by Misguich and Lhuillier [17]. Antiferromagnets in this class can de-
velop a spin gap by spontaneously breaking the lattice symmetry so that the
lattice is effectively dimerized (see discussion in the following paragraph).
There are no known materials with a spin gap in which the lattice symmetry
has not been broken, but there is a theoretical consensus that spin gap states
without lattice symmetry breaking are indeed possible in d > 1 [18]. The
study of antiferromagnets with an odd number of S = 1/2 spins per unit
cell is also important for the physics of the doped cuprates. These materials
exhibit spin-gap-like behavior at low dopings, and many theories associate
aspects of its physics with the spin gap state proximate to the magnetically
ordered state of the square lattice antiferromagnet found in La2CuO4.

Section 9.4 will describe the nature of a spin gap state on the square lat-
tice. We begin with the nearest-neighbor S = 1/2 Heisenberg Hamiltonian on
the square lattice—this is known to have a magnetic Néel order which breaks
spin rotation invariance. Now add further neighbor exchange couplings until
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magnetic order is lost and a spin gap appears. We will show that the ground
state undergoes a novel, second-order quantum phase transition to a state
with bond order: translational symmetry is spontaneously broken [19, 20] so
that the resulting lattice structure has an even number of S = 1/2 spins per
unit cell. So aspects of the non-zero spin excitations in this paramagnet are
very similar to the “dimerized” systems considered in Sect. 9.2, and expe-
rimentally they will appear to be almost identical. Indeed, it may well be
that the experimental materials initially placed in the class of Sect. 9.2, are
secretely systems in the class of Sect. 9.4 which have developed bond order
driven by the physics of antiferromagets (as in Sect. 9.4.1) at some inter-
mediate energy scale. The host lattice then distorts sympathetically to the
bond order, and is effectively dimerized. Such materials will possess many
more low-lying singlet excitations than those in the theory of Sect. 9.2: these
excitations play an important role in the restoration of translational symme-
try as we move towards the Néel state. Unfortunately, such singlet excitations
are rather difficult to detect experimentally.

Section 9.5 will address the same issue as Sect. 9.4, but for the case of
the triangular lattice. Here the spins are ordered in a non-collinear configu-
ration in the magnetically ordered state, as is observed at low temperatures
in Cs2CuCl4 [11, 12]. We will argue that in this case there is a route to de-
struction of magnetic order in which the resulting spin gap state preserves
full lattice symmetry [21,22]. Such a spin gap state has a novel ‘topological’
order [23] which endows its excitations with charges under an emergent gauge
force. Recent experimental measurements of the dynamic structure factor of
Cs2CuCl4 appear to be described rather well by the excitations of this to-
pologically ordered state at energies above which the magnetic order of the
ground state emerges [12,24].

9.2 Coupled Dimer Antiferromagnet

We begin by describing the quantum phase transition in a simple two-
dimensional model of antiferromagnetically coupled S = 1/2 Heisenberg spins
which has 2 spins per unit cell. The transition is tuned by varying a dimen-
sionless parameter λ. As we noted in Sect. 9.1 different ‘dimerized’ Mott
insulators will correspond to different values of λ, and the value of λ can be
tuned by applying pressure [8, 10].

We consider the “coupled dimer” Hamiltonian [25]

Hd = J
∑

〈ij〉∈A
Si · Sj + λJ

∑

〈ij〉∈B
Si · Sj , (9.1)

where Sj are spin-1/2 operators on the sites of the coupled-ladder lattice
shown in Fig. 9.1, with the A links forming decoupled dimers while the B
links couple the dimers as shown. The ground state of Hd depends only on
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Fig. 9.1. The coupled dimer antiferromagnet. Spins (S = 1/2) are placed on the
sites, the A links are shown as full lines, and the B links as dashed lines.

the dimensionless coupling λ, and we will describe the low temperature (T )
properties as a function of λ. We will restrict our attention to J > 0 and
0 ≤ λ ≤ 1.

Note that exactly at λ = 1, Hd is identical to the square lattice antifer-
romagnet, and this is the only point at which the Hamiltonian has only one
spin per unit cell. At all other values of λ Hd has a pair of S = 1/2 spins in
each unit cell of the lattice. As will become clear from our discussion, this
is a key characteristic which permits a simple theory for the quantum phase
transition exhibited by Hd. Models with only a single S = 1/2 spin per unit
cell usually display far more complicated behavior, and will be discussed in
Sects. 9.4,9.5.

We will begin with a physical discussion of the phases and excitations
of the coupled dimer antiferromagnet, Hd in Sect. 9.2.1. We will propose
a quantum field-theoretical description of this model in Sect. 9.2.2: we will
verify that the limiting regimes of the field theory contain excitations whose
quantum numbers are in accord with the phases discussed in Sect. 9.2.1, and
will then use the field theory to describe the quantum critical behavior both
at zero and finite temperatures.

9.2.1 Phases and Their Excitations

Let us first consider the case where λ is close to 1. Exactly at λ = 1, Hd is
identical to the square lattice Heisenberg antiferromagnet, and this is known
to have long-range, magnetic Néel phase in its ground state i.e. the spin-
rotation symmetry is broken and the spins have a non-zero, staggered, ex-
pectation value in the ground state with

〈Sj〉 = ηjN0n, (9.2)

where n is some fixed unit vector in spin space, ηj is ±1 on the two sublat-
tices, and N0 is the Néel order parameter. This long-range order is expected
to be preserved for a finite range of λ close to 1. The low-lying excitations
above the ground state consist of slow spatial deformations in the orienta-
tion n: these are the familiar spin waves, and they can carry arbitrarily low
energy i.e. the phase is ‘gapless’. The spectrum of the spin waves can be
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Fig. 9.2. Schematic of the quantum paramagnet ground state for small λ. The
ovals represent singlet valence bond pairs.

(a) (b)

Fig. 9.3. (a) Cartoon picture of the bosonic S = 1 excitation of the paramagnet.
(b) Fission of the S = 1 excitation into two S = 1/2 spinons. The spinons are
connected by a “string” of valence bonds (denoted by dashed ovals) which lie on
weaker bonds; this string costs a finite energy per unit length and leads to the
confinement of spinons.

obtained from a text-book analysis of small fluctuations about the ordered
Néel state using the Holstein-Primakoff method [26]: such an analysis yields
two polarizations of spin waves at each wavevector k = (kx, ky) (measured
from the antiferromagnetic ordering wavevector), and they have excitation
energy εk = (c2xk

2
x + c2yk

2
y)1/2, with cx, cy the spin-wave velocities in the two

spatial directions.
Let us turn now to the vicinity of λ = 0. Exactly at λ = 0, Hd is the

Hamiltonian of a set of decoupled dimers, with the simple exact ground state
wavefunction shown in Fig. 9.2: the spins in each dimer pair into valence
bond singlets, leading to a paramagnetic state which preserves spin rotation
invariance and all lattice symmetries. Excitations are now formed by breaking
a valence bond, which leads to a three-fold degenerate state with total spin
S = 1, as shown in Fig. 9.3a. At λ = 0, this broken bond is localized,
but at finite λ it can hop from site-to-site, leading to a triplet quasiparticle
excitation. Note that this quasiparticle is not a spin-wave (or equivalently, a
‘magnon’) but is more properly referred to as a spin 1 exciton or a triplon
[27]. We parameterize its energy at small wavevectors k (measured from the
minimum of the spectrum in the Brillouin zone) by
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Fig. 9.4. Ground states of Hd as a function of λ The quantum critical point is
at [28] λc = 0.52337(3). The compound TlCuCl3 undergoes a similar quantum
phase transition under applied pressure [8].

εk = ∆+
c2xk

2
x + c2yk

2
y

2∆
, (9.3)

where ∆ is the spin gap, and cx, cy are velocities; we will provide an explicit
derivation of (9.3) in Sect. 9.2.2. Figure 9.3 also presents a simple argument
which shows that the S = 1 exciton cannot fission into two S = 1/2 ‘spinons’.

The very distinct symmetry signatures of the ground states and excita-
tions between λ ≈ 1 and λ ≈ 0 make it clear that the two limits cannot
be continuously connected. It is known that there is an intermediate second-
order phase transition at [25, 28] λ = λc = 0.52337(3) between these states
as shown in Fig. 9.4. Both the spin gap ∆ and the Néel order parameter N0
vanish continuously as λc is approached from either side.

9.2.2 Bond Operators and Quantum Field Theory

In this section we will develop a continuum description of the low energy
excitations in the vicinity of the critical point postulated above. There are a
number of ways to obtain the same final theory: here we will use the method
of bond operators [14,15], which has the advantage of making the connection
to the lattice degrees of freedom most direct. We rewrite the Hamiltonian
using bosonic operators which reside on the centers of the A links so that it
is explicitly diagonal at λ = 0. There are 4 states on each A link (|↑↑〉, |↑↓〉,
|↓↑〉, and |↓↓〉) and we associate these with the canonical singlet boson s and
the canonical triplet bosons tα (α = x, y, z) so that
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|s〉 ≡ s†|0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) ; |tx〉 ≡ t†x|0〉 =
−1√

2
(| ↑↑〉 − | ↓↓〉) ;

|ty〉 ≡ t†y|0〉 =
i√
2

(| ↑↑〉+ | ↓↓〉) ; |tz〉 ≡ t†z|0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) .(9.4)

Here |0〉 is some reference vacuum state which does not correspond to a
physical state of the spin system. The physical states always have a single
bond boson and so satisfy the constraint

s†s+ t†αtα = 1. (9.5)

By considering the various matrix elements 〈s|S1|tα〉, 〈s|S2|tα〉, . . . , of the
spin operators S1,2 on the ends of the link, it follows that the action of S1
and S2 on the singlet and triplet states is equivalent to the operator identities

S1α =
1
2

(
s†tα + t†αs− iεαβγt

†
βtγ

)
,

S2α =
1
2

(
−s†tα − t†αs− iεαβγt

†
βtγ

)
, (9.6)

where α,β,γ take the values x,y,z, repeated indices are summed over and ε is
the totally antisymmetric tensor. Inserting (9.6) into (9.1), and using (9.5),
we find the following Hamiltonian for the bond bosons:

Hd = H0 +H1

H0 = J
∑

�∈A

(
−3

4
s†

�s� +
1
4
t†�αt�α

)

H1 = λJ
∑

�,m∈A

[
a(�,m)

(
t†�αtmαs

†
ms� + t†�αt

†
mαsms� + H.c.

)
+ b(�,m)

×
(
iεαβγt

†
mαt

†
�βt�γsm + H.c.

)
+ c(�,m)

(
t†�αt

†
mαtmβt�β − t†�αt

†
mβtmαt�β

)]
,(9.7)

where �,m label links in A, and a, b, c are numbers associated with the lattice
couplings which we will not write out explicitly. Note that H1 = 0 at λ = 0,
and so the spectrum of the paramagnetic state is fully and exactly determi-
ned. The main advantage of the present approach is that application of the
standard methods of many body theory to (9.7), while imposing the con-
straint (9.5), gives a very satisfactory description of the phases with λ �= 0,
including across the transition to the Néel state. In particular, an important
feature of the bond operator approach is that the simplest mean field theory
already yields ground states and excitations with the correct quantum num-
bers; so a strong fluctuation analysis is not needed to capture the proper
physics.

A complete numerical analysis of the properties of (9.7) in a self-consistent
Hartree-Fock treatment of the four boson terms in H1 has been presented
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in [14]. In all phases the s boson is well condensed at zero momentum, and
the important physics can be easily understood by examining the structure of
the low energy action for the tα bosons. For the particular Hamiltonian (9.1),
the spectrum of the tα bosons has a minimum at the momentum (0, π), and
for large enough λ the tα condense at this wavevector: the representation
(9.6) shows that this condensed state is the expected Néel state, with the
magnetic moment oscillating as in (9.2). The condensation transition of the
tα is therefore the quantum phase transition between the paramagnetic and
Néel phases of the coupled dimer antiferromagnet. In the vicinity of this
critical point, we can expand the tα bose field in gradients away from the
(0, π) wavevector: so we parameterize

t�,α(τ) = tα(r�, τ)ei(0,π)·r
 (9.8)

where τ is imaginary time, r ≡ (x, y) is a continuum spatial coordinate, and
expand the effective action in spatial gradients. In this manner we obtain

St =
∫

d2rdτ

[
t†α
∂tα
∂τ

+ Ct†αtα −
D

2
(tαtα + H.c.) +K1x|∂xtα|2 +K1y|∂ytα|2

+
1
2
(
K2x(∂xtα)2 +K2y(∂ytα)2 + H.c.

)
+ · · ·

]
. (9.9)

Here C,D,K1,2x,y are constants that are determined by the solution of the
self-consistent equations, and the ellipses represent terms quartic in the tα.
The action St can be easily diagonalized, and we obtain a S = 1 quasiparticle
excitation with the spectrum

εk =
[(
C +K1xk

2
x +K1yk

2
y

)2 −
(
D +K2xk

2
x +K2yk

2
y

)2]1/2
. (9.10)

This is, of course, the triplon (or spin exciton) excitation of the paramagnetic
phase postulated earlier in (9.3); the latter result is obtained by expanding
(9.10) in momenta, with ∆ =

√
C2 −D2. This value of ∆ shows that the

ground state is paramagnetic as long as C > D, and the quantum critical
point to the Néel state is at C = D.

The critical point and the Néel state are more conveniently described by
an alternative formulation of St (although an analysis using bond operators
directly is also possible [29]). It is useful to decompose the complex field tα
into its real and imaginary parts as follows

tα = Z(ϕα + iπα), (9.11)

where Z is a normalization chosen below. Insertion of (9.11) into (9.9) shows
that the field πα has a quadratic term ∼ (C + D)π2

α, and so the coefficient
of π2

α remains large even as the spin gap ∆ becomes small. Consequently, we
can safely integrate πα out, and the resulting action for ϕα takes the form
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Sϕ =
∫

d2rdτ

[
1
2

{
(∂τϕα)2 + c2x (∂xϕα)2 + c2y (∂yϕα)2 + sϕ2

α

}
+

u

24
(
ϕ2

α

)2
]
.

(9.12)

Here we have chosen Z to fix the coefficient of the temporal gradient term,
and s = C2 −D2.

The formulation Sϕ makes it simple to explore the physics in the region
s < 0. It is clear that the effective potential of ϕα has a minimum at a
non-zero ϕα, and that 〈ϕα〉 ∝ N0, the Néel order parameter in (9.2). It is
simple to carry out a small fluctuation analysis about this saddle point, and
we obtain the doublet of gapless spin-wave modes advertised earlier.

We close this subsection by noting that all of the above results have
a direct generalization to other lattices, and also to spin systems in three
dimensions. Matsumoto et al. [10] have applied the bond operator method to
TlCuCl3 and obtained good agreement with experimental observations. One
important difference that emerges in such calculations on some frustrated
lattices [30] is worth noting explicitly here: the minimum of the tα spectrum
need not be at special wavevector like (0, π), but can be at a more generic
wavevector Q such that Q and −Q are not separated by a reciprocal lattice
vector. A simple example which we consider here is an extension of (9.1)
in which there are additional exchange interactions along all diagonal bonds
oriented ‘north-east’ (so that the lattice has the connectivity of a triangular
lattice). In such cases, the structure of the low energy action is different, as
is the nature of the magnetically ordered state. The parameterization (9.8)
must be replaced by

t�α(τ) = t1α(r�, τ)eiQ·r
 + t2α(r�, τ)e−iQ·r
 , (9.13)

where t1,2α are independent complex fields. Proceeding as above, we find that
the low energy effective action (9.12) is replaced by

SΦ =
∫

d2rdτ

[
|∂τΦα|2 + c2x |∂xΦα|2 + c2y |∂yΦα|2 + s |Φα|2

+
u

2

(
|Φα|2

)2
+
v

2

∣∣Φ2
α

∣∣2
]
, (9.14)

where now Φα is a complex field such that 〈Φα〉 ∼ 〈t1α〉 ∼ 〈t†2α〉. Notice that
there is now a second quartic term with coefficient v. If v > 0, configurations
with Φ2

α = 0 are preferred: in such configurations Φα = n1α + in2α, where
n1,2α are two equal-length orthogonal vectors. Then from (9.13) and (9.6)
it is easy to see that the physical spins possess spiral order in the magne-
tically ordered state in which Φα is condensed. A spiral state is illustrated
in Fig. 9.13, and we will have more to say about this state in Sect. 9.5. For
the case v < 0, the optimum configuration has Φα = nαe

iθ where nα is a
real vector: this leads to a magnetically ordered state with spins polarized
collinearly in a spin density wave at the wavevector Q.
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9.2.3 Quantum Criticality

We will restrict our discussion here to the critical point described by Sϕ.
Similar results apply to SΦ for the parameter regime in which it exhibits a
second order transition [31]. Experimentally, the results below are relevant
to materials that can be tuned across the magnetic ordering transition by
applied pressure (such as TlCuCl3 [8]), or to materials which happen to be
near a critical point at ambient pressure (such as LaCuO2.5 [32]).

The field theory Sϕ is actually a familiar and well-studied model in the
context of classical critical phenomena. Upon interpreting τ as a third spatial
coordinate, Sϕ becomes the theory of a classical O(3)-invariant Heisenberg
ferromagnet at finite temperatures (in general a d dimensional quantum anti-
ferromagnet will map to a d+1 dimensional classical Heisenberg ferromagnet
at finite temperature [33]). The Curie transition of the Heisenberg ferroma-
gnet then maps onto the quantum critical point between the paramagnetic
and Néel states described above. A number of important implications for the
quantum problem can now be drawn immediately.

The theory Sϕ has a ‘relativistic’ invariance, and consequently the dyna-
mic critical exponent must be z = 1. The spin correlation length will diverge
at the quantum critical point with the exponent [34] ν = 0.7048(30). The
spin gap of the paramagnet, ∆, vanishes as ∆ ∼ (λc − λ)zν , and this pre-
diction is in excellent agreement with the numerical study of the dimerized
antiferromagnet [28].

A somewhat more non-trivial consequence of this mapping is in the struc-
ture of the spectrum at the critical point λ = λc. At the Curie transition of
the classical ferromagnet it is known [35] that spin correlations decay as
∼ 1/p2−η, where p is the 3-component momentum in the 3-dimensional clas-
sical space. We can now analytically continue this expression from its pz de-
pendence in the third classical dimension to the real frequency, ω, describing
the quantum antiferromagnet. This yields the following fundamental result
for the dynamic spin susceptibility, χ(k, ω), at the T = 0 quantum critical
point of the coupled-dimer antiferromagnet:

χ(k, ω) ∼ 1
(
c2xk

2
x + c2yk

2
y − (ω + iε)2

)1−η/2 , (9.15)

where ε is a positive infinitesimal. Note that in (9.15) the momentum k is
measured from the (π, π) ordering wavevector of the Néel state. The exponent
η is the same as that of the classical Heisenberg ferromagnet, and has a rather
small value [34]: η ≈ 0.03. However, the non-zero η does make a significant
difference to the physical interpretation of the excitations at the critical point.
In particular note that Imχ(k, ω) does not have a pole at any k, but rather
a continuum spectral weight above a threshold energy [36,37]
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Imχ(k, ω) ∼ sgn(ω) sin
(πη

2

) θ
(
|ω| −

√
c2xk

2
x + c2yk

2
y

)

(
ω2 − c2xk

2
x − c2yk

2
y

)1−η/2 , (9.16)

where θ is the unit step function. This indicates there are no quasiparticles
at the critical point, and only a dissipative critical continuum.

There is also some very interesting structure in the quantum critical dyna-
mic response at nonzero T [36,37]. Here, one way to understand the physics
is to approach the critical point from the paramagnetic side (λ < λc). As
we noted earlier, the paramagnetic phase has well-defined ‘triplon’ or ‘spin
exciton’ excitations tα, and these have an infinite lifetime at T = 0. At
T > 0, thermally excited tα quasiparticles will collide with each other via
their scattering amplitude, u, and this will lead to a finite lifetime [37, 38].
Now approach λ = λc. The renormalization group analysis of Sϕ tells us that
the quartic coupling u approaches a fixed point value in the critical region.
This means that u is no longer an arbitrary parameter, and an appropriately
defined tα scattering amplitude must also acquire universal behavior. In par-
ticular, the tα lifetime is determined by the only energy scale available, which
is kBT . So we have the remarkable result that the characteristic spin relaxa-
tion time is a universal number times �/(kBT ). More precisely, we can write
for the local dynamic spin susceptibility χL(ω) =

∫
d2kχ(k, ω) the universal

scaling form

ImχL(ω) = T ηF

(
�ω

kBT

)
. (9.17)

Here F is a universal function which has the limiting behaviors

F (ω) ∼
{
ω , |ω| 
 1
sgn(ω)|ω|η , |ω| � 1 . (9.18)

Note that F has a smooth linear behavior in the regime |�ω| 
 kBT , and
this is similar to any simple dissipative system. The difference here is that
the coefficient of dissipation is determined by kBT alone.

The quantum critical behavior described here is expected to apply more
generally to other correlated electron systems, provided the critical theory
has non-linear couplings which approach fixed point values.

9.3 Influence of an Applied Magnetic Field

An important perturbation that can be easily applied to antiferromagnets in
the class discussed in Sect. 9.2 is a uniform magnetic field. The Zeeman energy
in available fields can often be comparable to the typical antiferromagnetic
exchange constant J , and so the ground state can be perturbed significantly.
It is therefore of interest to understand the evolution of the phase diagram
in Fig. 9.4 under an applied field of arbitrary strength.
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We are interested here in the evolution of the ground state as a function
of B where the Hamiltonian Hd in (9.1) is transformed as

Hd → Hd −
∑

j

B · Sj . (9.19)

Most of the basic features can actually be understood quite easily in a simple
extension of the self-consistent Hartree-Fock theory of bond bosons that was
discussed in Sect. 9.2.2. Under the transformation (9.19), it is easily seen
from (9.6) that

Hd → Hd + iBα

∑

�∈A
εαβγt

†
�βt�γ . (9.20)

The presence of a non-zero B breaks spin rotation invariance and so all the
self-consistent expectation values of operator bilinears have to reflect this
reduced symmetry in the Hartree-Fock theory. Apart from this the mechanics
of the computation mostly remain the same. However, for stronger fields, it
is sometimes necessary to allow for broken translational symmetry in the
expectation values, as the ground state can acquire a modulated structure.

We will discuss the results of such an analysis in weak and strong fields
in the following subsections.

9.3.1 Weak Fields

For weak fields applied to the paramagnet (specifically, for fields B < ∆, the
influence of (9.20) can be understood exactly. The coupling to B involves an
operator which commutes with the remaining Hamiltonian (the total spin),
and hence the wavefunction of the ground state remains insensitive to the
value of B. The same applies to the wavefunctions of the excited states.
However, the excited states can have non-zero total spin and so their energies
do depend upon B. In particular the triplet tα quasiparticle with energy (9.3)
or (9.10) carries total spin S = 1, and consequently we conclude that this
triplet splits according to

εk → εk −mB (9.21)

with m = 0,±1. Note that the lowest energy quasiparticle (with m = 1) has
a positive energy as long as B < ∆, and this is required for the stability of
the paramagnet. So the phase boundary of the paramagnetic phase is exactly
B = ∆, and using ∆ ∼ (λc − λ)zν , we can sketch the boundary of the
paramagnetic phase as in Fig. 9.5.

What happens beyond the paramagnetic phase? As in Sect. 9.2.2, we
answer this question by using the transformation (9.11), and by examining
the analog of Sϕ under a non-zero B. Using (9.20), and integrating out πα,
we now find that the action Sϕ in (9.12) remains unchanged apart from the
mapping [40]
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0 1λλc

Spin gap
paramagnet.

Canted order.

B

Fig. 9.5. Evolution of the phases of Fig. 9.4 under a weak field B (magnetization
plateau at large B, appearing in Fig. 9.6, are not shown). The paramagnetic phase
has exactly the same ground state wavefunction as that at B = 0. The phase
boundary behaves like B ∼ (λc − λ)zν . The B field is oriented vertically upwards,
and the static moments in the canted phase can rotate uniformly about the vertical
axis. The phase boundary at non-zero B is described by the z = 2 dilute Bose gas
quantum critical theory. The phase diagram of TlCuCl3 in applied pressure and
magnetic field looks similar to the one above [10]. The corresponding phase diagram
of the field-induced magnetic ordering transition of a superconductor (rather than
a Mott insulator) has been investigated recently [39], and successfully applied to
experiments on the doped cuprates; this phase diagram of the superconductor has
significant differences from the one above.

(∂τϕα)2 → (∂τϕα + iεαβγBβϕγ)2 . (9.22)

The action (9.12), (9.22) can now be analyzed by a traditional small fluc-
tuation analysis about ϕα = 0. Let us assume that B = (0, 0, B) is oriented
along the z axis. Then the coefficient of ϕ2

z is s, while that of ϕ2
x + ϕ2

y is
s − B2. This suggests that we focus only on the components of ϕα in the
plane orthogonal to B, and integrate out the component of ϕα along the
direction of B. Indeed, if we define

Ψ =
ϕx + iϕy√

B
(9.23)

and integrate out ϕz, then we obtain from (9.12), (9.22) the effective action
for Ψ :

SΨ =
∫

d2rdτ

[
Ψ∗∂τΨ +

c2x
2B

|∂xΨ |2 +
c2y
2B

|∂yΨ |2 − µ|Ψ |2 +
u

24B
|Ψ |4

]
.

(9.24)

Here, µ = (s − B2)/2B, and we have retained only leading order temporal
and spatial gradients and the leading dependence of u. Clearly, this is the
theory of a Bose gas in the grand canonical ensemble at a chemical potential
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µ, with a repulsive short-range interaction [41]. At T = 0, and µ < 0, such a
theory has a ground state which is simply the vacuum with no Bose particles.
Here, this vacuum state corresponds to the spin gap antiferromagnet, and the
B-independence of the ground state of the antiferromagnet corresponds here
to the µ independence of the ground state of SΨ . There is an onset of a finite
density of bosons in SΨ for µ > 0, and this onset therefore corresponds to
the quantum phase transition in the antiferromagnet at B = ∆. So we must
have µ = 0 in SΨ at precisely the point where B = ∆: the value of µ quoted
above shows that this is true at zeroth order in u, and higher order terms in
u must conspire to maintain this result.

The above analysis makes it clear that the µ ≥ 0 region of SΨ will describe
the quantum phase transition out of the paramagnet at non-zero B. This
transition is merely the formation of a Bose-Einstein condensate of the m = 1
component of the triplon bosons. For µ > 0 we have a finite density of Ψ
bosons which Bose condense in the ground state, so that 〈Ψ〉 �= 0. From (9.23)
we see that this Bose condensation corresponds to antiferromagnetic order in
the plane perpendicular to B. Indeed, the phase of this Bose condensate is
simply the orientation of the spins in the x, y plane, and so here this phase
is directly observable. Further, by taking derivatives of (9.19) and SΨ w.r.t.
B, we see that the density of bosons is proportional to the magnetization per
spin, Ω, in the direction parallel to B:

Ω ≡ 1
N

∑

j

〈Sjz〉 ∝ 〈|Ψ |2〉, (9.25)

where N is the total number of spins. Consequently, the average magnetic
moments in the non-paramagnetic phase are in a ‘canted’ configuration, as
shown in Fig. 9.5. The quantum phase transition between the paramagnet
and the canted state is described by the theory of the density onset in a
Bose gas: this theory has z = 2, ν = 1/2, and an upper critical dimension of
d = 2 [41,42].

We conclude this section by noting that interesting recent work [43] has
examined the Bose-Einstein condensation of the m = 1 triplon bosons in a
random potential. This is achieved by studying Tl1−xKxCuCl3, where the
stoichiometric disorder among the non-magnetic ions acts as a random po-
tential on the triplons.

9.3.2 Strong Fields

We have seen above that applying a magnetic field eventually leads to the
onset of a ferromagnetic moment in the directions of the applied field. How
does this moment evolve as we continue to increase the field? Eventually,
B will become so large that it pays to have all the spins polarized in the
direction of the field: this corresponds to a saturation in the magnetization,
and making B even stronger will not change the ground state. In terms of the
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t bosons, this fully polarized state, |FP 〉, with Ω = 1/2, is seen from (9.20)
or (9.4) to correspond exactly to

|FP 〉 =
∏

�

(t†�x + it†�y)
√

2
|0〉. (9.26)

So there must be at least one more quantum phase transition as a B is
increased: this is transition from the |FP 〉 state at very large B to a state
with a continuously varying ferromagnetic moment which eventually reaches
the saturation value from below.

A theory for the transition away from the |FP 〉 state with decreasing
B can be developed using methods very similar to those used in Sect. 9.2.2
and 9.3.1. We treat the quartic terms in (9.7) in a Hartree-Fock approxima-
tion, and examine small fluctuations away from the |FP 〉 state. These are
dominated by excitation which create tz quanta (which have m = 0) on the
dimers, and so the effective theory is expressed in terms of

Ψ̃ † ∼ t†z(tx − ity). (9.27)

Indeed, it is not difficult to see that the resulting theory for Ψ̃ has exactly
the same form as (9.24). Now the µ for Ψ̃ decreases with increasing B, and
we have µ = 0 at the critical field at which |FP 〉 first becomes the ground
state. Furthermore, 〈|Ψ̃ |2〉 now measures the deviation away from Ω = 1/2.
Apart from this ‘inversion’ in the field axis, it is clear that the universality
class of the present transition is identical to that discussed in Sect. 9.3.1.

A further possibility for a plateau in the value of Ω with increasing B
is worth mentioning [44], as analogs are realized in SrCu2(BO3)2 [45] and
NH4CuCl3 [46]. So far we have found plateaus at Ω = 0 for B < ∆, and
at Ω = 1/2 for large B. For the Ω = 1/2 state we had every dimer with a
(t†x+it†y)/

√
2 boson. Now imagine that these bosons form a Wigner-crystalline

state so that there are p such bosons for every q dimers; here 0 ≤ p ≤ q,
q ≥ 1, are integers. Such a state will have Ω = p/(2q), and breaks the
translational symmetry of the underlying dimer antiferromagnet such that
there are q dimers per unit cell (or 2q spins per unit cell). The energy gap
towards boson motion in the Wigner crystal (i.e. its incompressibility) will
ensure that Ω is stable under small variations of B. In this manner we can
obtain a magnetization plateau at Ω = p/(2q) in a state with a unit cell of q
dimers.

We summarize the considerations of this subsection in Fig. 9.6, showing a
possible evolution of Ω in a model similar to Hd in (9.1). As we have already
noted, the plateau onset transitions at Ω = 0 and Ω = 1/2 are both described
by the z = 2 dilute Bose gas theory (9.24). The transitions in and out of other
fractional plateaus are potentially more complicated because these involve
spontaneous breaking of translational symmetry. The translation symmetry
could be restored at the same point at which there is onset of superfluid
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B

Ω

1/2

0

Fig. 9.6. Magnetization density, Ω, defined in (9.25) as a function of the applied
magnetic field. The plateau shown at Ω = 0 is present provided the zero field
state is a paramagnet i.e. λ < λc. The full saturation plateau at Ω = 1/2 is always
present. The plateau at Ω = 1/4 is not present in the nearest-neighbor model Hd in
(9.1), but it is believed that such a plateau will appear upon including frustrating
exchange interactions; this plateau will involve a broken translational symmetry
in the coupled dimer antiferromagnet. Such magnetization plateaux are found in
SrCu2(BO3)2 [45] and NH4CuCl3 [46]

order—this is possibly a first order transition with a jump in the value of
Ω. Alternatively, there could be an intermediate ‘supersolid’ phase, in which
case the plateau transition has the same broken translational symmetry on
both sides of it, placing it also in the class of (9.24).

9.4 Square Lattice Antiferromagnet

This section will address the far more delicate problem of quantum phase
transitions in antiferromagnets with an odd number of S = 1/2 spins per
unit cell. We will mainly concern ourselves with square lattice Hamiltonians
of the form

Hs = J
∑

〈ij〉
Si · Sj + . . . . (9.28)

Here J is a nearest-neighbor antiferromagnetic exchange and the ellipses re-
present further short-range exchange interactions (possibly involving multiple
spin ring exchange) which preserve the full symmetry of the square lattice.
The model Hd is a member of the class Hs only at λ = 1; at other values
of λ the symmetry group of the square lattice is explicitly broken, and the
doubling of the unit cell was crucial in the analysis of Sect. 9.2. With full
square lattice symmetry, the paramagnetic phase is not determined as simply
as in the small λ expansion, and we have to account more carefully for the
‘resonance’ between different valence bond configurations.
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One ground state of Hs is, of course, the Néel state characterized by
(9.2); this is obtained in the absence of the interactions denoted by ellipses in
(9.28). Now imagine tuning the further neighbor couplings in (9.28) so that
spin rotation invariance is eventually restored and we obtain a paramagnetic
ground state. We can divide the possibilities for this state into two broad
classes, which we discuss in turn.

In the first class of paramagnets, no symmetries of the Hamiltonian are
broken, and the spins have paired with each other into valence bond singlets
which strongly resonate between the large number of possible pairings: this
is a resonating valence bond (RVB) liquid [47,48]. We will discuss such states
further in Sect. 9.5: they have a connection with magnetically ordered sta-
tes with non-collinear magnetic order, unlike the collinear Néel state of the
nearest neighbor square lattice antiferromagnet.

In the second class of paramagnets, the valence bond singlets sponta-
neously crystallize into some configuration which necessarily breaks a lattice
symmetry. A simple example of such a bond-ordered paramagnet is the co-
lumnar state we have already considered in Fig. 9.2. For the dimerized an-
tiferromagnet Hd, the bond configuration in Fig. 9.2 was chosen explicitly
in the Hamiltonian by the manner in which we divided the links into clas-
ses A and B for λ �= 1. For Hs, there is no such distinction between the
links, and hence a state like Fig. 9.2 spontaneously breaks a lattice symme-
try. Furthermore, there are 3 other equivalent states, obtained by successive
90 degree rotations of Fig. 9.2 about any lattice site, which are completely
equivalent. So for Hs, the bond-ordered paramagnet in Fig. 9.2 is four-fold
degenerate. Going beyond simple variational wavefunctions like Fig. 9.2, the
bond-ordered states are characterized by a bond order parameter

Qij = 〈Si · Sj〉; (9.29)

the values of Qij on the links of the lattice in a bond-ordered state have a
lower symmetry than the values of the exchange constants Jij in the Hamil-
tonian. We will develop an effective model for quantum fluctuations about
the collinear Néel state in Hs below, and will find that such bond-ordered
paramagnets emerge naturally [19].

Let us now try to set up a theory for quantum fluctuations about the Néel
state (9.2). It is best to do this in a formulation that preserves spin rotation
invariance at all stages, and this is facilitated by the coherent state path
integral (see Chap. 13 of [49]). The essential structure of this path integral
can be understood simply by looking at a single spin in a magnetic field h with
the Hamiltonian H1 = −h · S. Then its partition function at a temperature
T is given by

Tr exp (h · S/T ) =
∫
Dn(τ) exp

(
i2SA[n(τ)] + S

∫ 1/T

0
dτh · n(τ)

)
.

(9.30)
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ni
nj

n0

2Aij

Fig. 9.7. The path traced out by a single spin on the unit sphere in imaginary
time. After discretizing time, the area enclose by the path is written as the sum
over the areas of spherical triangles: Aij is half the area of the triangle with vertices
n0, ni, nj . Different choices for the arbitrary point n0 correspond to different gauge
choices associated with (9.32) and (9.34).

Here S is the angular momentum of the spin S (we are interested primarily
in the case S = 1/2) and n(τ) is a unit 3-vector with n(0) = n(1/T ). So
the above path integral is over all closed curves on the surface of a sphere.
The first term in the action of the path integral is the crucial Berry phase:
A[n(τ)] is half the oriented area enclosed by the curve n(τ) (the reason for
the half will become clear momentarily). Note that this area is only defined
modulo 4π, the surface area of a unit sphere. The expression (9.30) has an
obvious generalization to the lattice Hamiltonian Hs: the action adds up the
Berry phases of every spin, and there is an additional energy term which is
just the Hamiltonian with the replacement Sj → Snj .

We are now faced with the problem of keeping track of the areas enclosed
by the curves traced out by all the spins. This seems rather daunting, parti-
cularly because the half-area A[n(τ)] is a global object defined by the whole
curve, and cannot be obviously be associated with local portions of the curve.
One convenient way to proceed is illustrated in Fig. 9.7: discretize imaginary
time, choose a fixed arbitrary point n0 on the sphere, and thus write the area
as the sum of a large number of spherical triangles. Note that each triangle
is associated with a local portion of the curve n(τ).

We now need an expression for A(n1,n2,n3), defined as half the area of
the spherical triangle with vertices n1, n2, n3. Complicated expressions for
this appear in treatises on spherical trigonometry, but a far simpler expression
is obtained after transforming to spinor variables [50]. Let us write
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nj ≡ z∗
jaσabzjb, (9.31)

where a, b =↑, ↓ and we will always assume an implied summation over such
indices, σab are the Pauli matrices, and zj↑, zj↓ are complex numbers obeying
|zj↑|2 + |zj↓|2 = 1. Note that knowledge of nj only defines zja up to a U(1)
gauge transformation under which

zja → zjae
iφj . (9.32)

Then, associated with each pair of vertices ni,nj we define

Aij ≡ arg [z∗
iazja] . (9.33)

Under the gauge transformation (9.32) we have

Aij → Aij − φi + φj , (9.34)

i.e. Aij behaves like a U(1) gauge field. Note also that Aij is only defined mo-
dulo 2π, and that Aji = −Aij . For future use, we also mention the following
identity, which follows from (9.31) and (9.33):

z∗
iazja =

(
1 + ni · nj

2

)1/2

eiAij . (9.35)

The classical result for the half-area of the spherical triangle can be written
in the simple form in terms of the present U(1) gauge variables:

A(n1,n2,n3) = A12 +A23 +A31. (9.36)

We chose A as a half-area earlier mainly because then the expressions (9.33)
and (9.36) come out without numerical factors. It is satisfying to observe that
this total area is invariant under (9.34), and that the half-area is ambiguous
modulo 2π.

Using (9.36), we can now write down a useful expression for A[n(τ)]. We
assume that imaginary time is discretized into times τj separated by intervals
∆τ . Also, we denote by j+τ the site at time τj+∆τ , and defineAj,j+τ ≡ Ajτ .
Then

A[n(τ)] =
∑

j

Ajτ . (9.37)

Note that this expression is a gauge-invariant function of the U(1) gauge field
Ajτ , and is analogous to the quantity sometimes called the Polyakov loop.

We are now ready to write down the first form proposed effective action
for the quantum fluctuating Néel state. We do need to address some simple
book-keeping considerations first:
(i) Discretize spacetime into a cubic lattice of points j. Note that the same
index j referred to points along imaginary time above, and to square lattice
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points in Hs. The meaning of the site index should be clear from the context.
(ii) On each spacetime point j, we represent quantum spin operator Sj by

Sj = ηjSnj , (9.38)

where nj is a unit vector, and ηj = ±1 is the sublattice staggering factor
appearing in (9.2). This representation is that expected from the coherent
state path integral, apart from the ηj factor. We have chosen to include ηj

because of the expected local antiferromagnetic correlations of the spins. So
in a quantum fluctuating Néel state, we can reasonably expect nj to be a
slowly varying function of j.
(iii) Associated with each nj , define a spinor zja by (9.31).
(iv) With each link of the cubic lattice, we use (9.33) to associate with it a
Ajµ ≡ Aj,j+µ. Here µ = x, y, τ extends over the 3 spacetime directions.
With these preliminaries in hand, we can motivate the following effective
action for fluctuations under the Hamiltonian Hs:

Z̃ =
∏

ja

∫
dzja

∏
j δ
(
|zja|2 − 1

)
exp

(
1
g̃

∑
〈ij〉 ni · nj + i2S

∑
j ηjAjτ

)
.

(9.39)

Here the summation over 〈ij〉 extends over nearest neighbors on the cubic
lattice. The integrals are over the zja, and the nj and Ajτ are dependent
variables defined via (9.31) and (9.33). Note that both terms in the action
are invariant under the gauge transformation (9.32); consequently, we could
equally well have rewritten Z̃ as an integral over the nj , but it turns out to
be more convenient to use the zja and to integrate over the redundant gauge
degree of freedom. The first term in the action contains the energy of the
Hamiltonian Hs, and acts to prefer nearest neighbor nj which are parallel
to each other—this “ferromagnetic” coupling between the nj in spacetime
ensures, via (9.38), that the local quantum spin configurations are as in the
Néel state. The second term in the action is simply the Berry phase required
in the coherent state path integral, as obtained from (9.30) and (9.37): the
additional factor of ηj compensates for that in (9.38). The dimensionless
coupling g̃ controls the strength of the local antiferromagnetic correlations;
it is like a “temperature” for the ferromagnet in spacetime. So for small g̃ we
expect Z̃ to be in the Néel phase, while for large g̃ we can expect a quantum-
“disordered” paramagnet. For a much more careful derivation of the partition
function Z̃ from the underlying antiferromagnet Hs, including a quantitative
estimate of the value of g̃, see e.g. Chap. 13 of [49].

While it is possible to proceed with the remaining analysis of this sec-
tion using Z̃, we find it more convenient to work with a very closely related
alternative model. Our proposed theory for the quantum fluctuating antifer-
romagnet in its final form is [51,52]
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Z =
∏

jµ

∫ 2π

0

dAjµ

2π

∏

ja

∫
dzja

∏

j

δ
(
|zja|2 − 1

)

exp



1
g

∑

jµ

(
z∗

jae
−iAjµzj+µ,a + c.c.

)
+ i2S

∑

j

ηjAjτ



 .

(9.40)

Note that we have introduced a new field Ajµ, on each link of the cubic lattice,
which is integrated over. Like Aiµ, this is also a U(1) gauge field because all
terms in the action above are invariant under the analog of (9.34):

Ajµ → Ajµ − φj + φj+µ. (9.41)

The very close relationship between Z and Z̃ may be seen [51] by explicitly
integrating over the Ajµ in (9.40): this integral can be done exactly because
the integrand factorizes into terms on each link that depend only on a single
Ajµ. After inserting (9.35) into (9.40), the integral over the jµ link is
∫ 2π

0

dAjµ

2π
exp

(
(2(1 + nj · nj+µ))1/2

g
cos(Ajµ −Ajµ) + i2SηjδµτAjµ

)

= I2Sδµτ

[
(2(1 + nj · nj+µ))1/2

g

]
exp (i2SηjδµτAjµ) ,

(9.42)

where the result involves either the modified Bessel function I0 (for µ = x, y)
or I2S (for µ = τ). We can use the identity (9.42) to perform the integral
over Ajµ on each link of (9.40), and so obtain a partition function, denoted
Z ′, as an integral over the zja only. This partition function Z ′ has essentially
the same structure as Z̃ in (9.39). The Berry phase term in Z ′ is identical to
that in Z̃. The integrand of Z ′ also contains a real action expressed solely as
a sum over functions of ni ·nj on nearest neighbor links: in Z̃ this function is
simply ni ·nj/g̃, but the corresponding function obtained from (9.40) is more
complicated (it involves the logarithm of a Bessel function), and has distinct
forms on spatial and temporal links. We do not expect this detailed form
of the real action function to be of particular importance for universal pro-
perties: the initial simple nearest-neighbor ferromagnetic coupling between
the nj in (9.39) was chosen arbitrarily anyway. So we may safely work with
the theory Z in (9.40) henceforth.

One of the important advantages of (9.40) is that we no longer have to
keep track of the complicated non-linear constraints associated with (9.31)
and (9.33); this was one of the undesirable features of (9.39). In Z, we simply
have free integration over the independent variables zja and Ajµ. The rema-
inder of this section will be devoted to describing the properties of Z as a
function of the coupling g.
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The theory Z in (9.40) has some resemblance to the so-called CPN−1

model from the particle physics literature [50, 53, 54]: our indices a, b take
only 2 possible values, but the general model is obtained when a, b = 1 . . . N ,
and we will also find it useful to consider Z for general N . The case of general
N describes SU(N) and Sp(N) antiferromagnets on the square lattice [19].
Note also that it is essential for our purposes that the theory is invariant
under Ajµ → Ajµ + 2π, and so the U(1) gauge theory is compact. Finally
our model contains a Berry phase term (which can be interpreted as a JµAµ

term associated with a current Jjµ = 2Sηjδµτ of static charges ±2S on each
site) which is not present in any of the particle physics analyses. This Berry
phase term will be an essential central actor in all of our results below for
the paramagnetic phase and the quantum phase transition.

The properties of Z are quite evident in the limit of small g. Here, the
partition function is strongly dominated by configurations in which the real
part of the action is a minimum. In a suitable gauge, these are the configu-
rations in which zja = constant, and by (9.31), we also have nj a constant.
This obviously corresponds to the Néel phase with (9.2). A Gaussian fluctua-
tion analysis about such a constant saddle point is easily performed, and we
obtain the expected spectrum of a doublet of gapless spin waves.

The situation is much more complicated for large g where we should
naturally expect a paramagnetic phase with 〈Sj〉 = 〈nj〉 = 0. This will be
discussed in some detail in Sect. 9.4.1. Finally, we will address the nature of
the quantum phase transition between the Néel and paramagnetic phases in
Sect. 9.4.2.

9.4.1 Paramagnetic Phase

The discussion in this section has been adapted from another recent review
by the author [55].

For large g, we can perform the analog of a ‘high temperature’ expansion
of Z in (9.40). We expand the integrand in powers of 1/g and perform the
integral over the zja term-by-term. The result is then an effective theory
for the compact U(1) gauge field Ajµ alone. An explicit expression for the
effective action of this theory can be obtained in powers of 1/g: this has the
structure of a strong coupling expansion in lattice gauge theory, and higher
powers of 1/g yield terms dependent upon gauge-invariant U(1) fluxes on
loops of all sizes residing on the links of the cubic lattice. For our purposes,
it is sufficient to retain only the simplest such term on elementary square
plaquettes, yielding the partition function

Z̃A =
∏

jµ

∫ 2π

0

dAjµ

2π
exp



 1
e2

∑

�

cos (εµνλ∆νAjλ)− i2S
∑

j

ηjAjτ



 ,

(9.43)
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where εµνλ is the totally antisymmetric tensor in three spacetime dimensions.
Here the cosine term represents the conventional Maxwell action for a com-
pact U(1) gauge theory: it is the simplest local term consistent with the gauge
symmetry (9.41) and which is periodic under Ajµ → Ajµ + 2π; closely rela-
ted terms appear under the 1/g expansion. The sum over � in (9.43) extends
over all plaquettes of the cubic lattice, ∆µ is the standard discrete lattice
derivative (∆µfj ≡ fj+µ − fj for any fj), and e2 is a coupling constant. We
expect the value of e to increase monotonically with g.

As is standard in duality mappings, we first rewrite the partition function
in 2+1 spacetime dimensions by replacing the cosine interaction in (9.43) by
a Villain sum [56,57] over periodic Gaussians:

ZA =
∑

{q̄µ}

∏

jµ

∫ 2π

0

dAjµ

2π
exp

(
− 1

2e2
∑

�

(εµνλ∆νAjλ − 2πq̄µ)2

− i2S
∑

j

ηjAjτ

)
, (9.44)

where the q̄µ are integers on the links of the dual cubic lattice, which pierce
the plaquettes of the direct lattice. Throughout this article we will use the
index ̄ to refer to sites of this dual lattice, while j refers to the direct lattice
on sites on which the spins are located.

We will now perform a series of exact manipulations on (9.44) which will
lead to a dual interface model [19, 20, 58]. This dual model has only positive
weights—this fact, of course, makes it much more amenable to a standard
statistical analysis. This first step in the duality transformation is to rewrite
(9.44) by the Poisson summation formula:

∑

{q̄µ}
exp

(
− 1

2e2
∑

�

(εµνλ∆νAjλ − 2πq̄µ)2
)

=
∑

{a̄µ}
exp

(
−e

2

2

∑

̄

a2
̄µ − i

∑

�

εµνλa̄µ∆νAjλ

)
,(9.45)

where a̄µ (like q̄µ) is an integer-valued vector field on the links of the dual
lattice (here, and below, we drop overall normalization factors in front of the
partition function). Next, we write the Berry phase in a form more amena-
ble to duality transformations. Choose a ‘background’ a̄µ = a0

̄µ flux which
satisfies

εµνλ∆νa
0
̄λ = ηjδµτ , (9.46)

where j is the direct lattice site in the center of the plaquette defined by
the curl on the left-hand-side. Any integer-valued solution of (9.46) is an
acceptable choice for a0

̄µ, and a convenient choice is shown in Fig. 9.8. Using
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+1

+1 +1
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-1-1

Fig. 9.8. Specification of the non-zero values of the fixed field a0
̄µ. The circles are

the sites of the direct lattice, j, while the crosses are the sites of the dual lattice, ̄;
the latter are also offset by half a lattice spacing in the direction out of the paper
(the µ = τ direction). The a0

̄µ are all zero for µ = τ, x, while the only non-zero
values of a0

̄y are shown above. Notice that the a0 flux obeys (9.46).

(9.46) to rewrite the Berry phase in (9.44), applying (9.45), and shifting a̄µ

by the integer 2Sa0
̄µ, we obtain a new exact representation of ZA in (9.44):

ZA =
∑

{a̄µ}

∏

jµ

∫ 2π

0

dAjµ

2π
exp

(
−e

2

2

∑

̄,µ

(a̄µ − 2Sa0
̄µ)2

−i
∑

�

εµνλa̄µ∆νAjλ

)
. (9.47)

The integral over the Ajµ can be performed independently on each link,
and its only consequence is the imposition of the constraint εµνλ∆νa̄λ = 0.
We solve this constraint by writing a̄µ as the gradient of an integer-valued
‘height’ h̄ on the sites of the dual lattice, and so obtain

Zh =
∑

{h̄}
exp

(
−e

2

2

∑

̄,µ

(∆µh̄ − 2Sa0
̄µ)2

)
. (9.48)

We emphasize that, apart from an overall normalization, we have Zh = ZA

exactly. This is the promised 2+1 dimensional interface, or height, model in
almost its final form.

The physical properties of (9.48) become clearer by converting the “fru-
stration” a0

̄µ in (9.48) into offsets for the allowed height values. This is done
by decomposing a0

̄µ into curl and divergence free parts and writing it in terms
of new fixed fields, X̄ and Yjµ as follows:

a0
̄µ = ∆µX̄ + εµνλ∆νYjλ. (9.49)

The values of these new fields are shown in Fig. 9.9. Inserting (9.49) into
(9.48), we can now write the height model in its simplest form [20]
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Fig. 9.9. Specification of the non-zero values of the fixed fields (a) X̄, (b) Yjµ,
(c) εµνλ∆νYjλ introduced in (9.49). The notational conventions are as in Fig. 9.8.
Only the µ = τ components of Yjµ are non-zero, and these are shown in (b). Only
the spatial components of εµνλ∆νYjλ are non-zero, and these are oriented as in (c)
with magnitude 1/4. The four dual sublattices, W , X, Y , Z, are also indicated in
(c). Note that XW = 0, XX = 1/4, XY = 1/2, and XZ = 3/4.

Zh =
∑

{H̄}
exp

(
−e

2

2

∑

̄

(∆µH̄)
2

)
, (9.50)

where

H̄ ≡ h̄ − 2SX̄ (9.51)

is the new height variable we shall work with. Notice that the Yjµ have
dropped out, while the X̄ act only as fractional offsets (for S not an even
integer) to the integer heights. From (9.51) we see that for half-odd-integer
S the height is restricted to be an integer on one of the four sublattices, an
integer plus 1/4 on the second, an integer plus 1/2 on the third, and an integer
plus 3/4 on the fourth; the fractional parts of these heights are as shown in
Fig. 9.9a; the steps between neighboring heights are always an integer plus
1/4, or an integer plus 3/4. For S an odd integer, the heights are integers on
one square sublattice, and half-odd-integers on the second sublattice. Finally



406 S. Sachdev

for even integer S the offset has no effect and the height is an integer on all
sites. We discuss these classes of S values in turn in the following subsections.

4.1.1 S Even Integer

In this case the offsets 2SX̄ are all integers, and (9.50) is just an ordi-
nary three dimensional height model which has been much studied in the
literature [57,59]. Unlike the two-dimensional case, three-dimensional height
models generically have no roughening transition, and the interface is always
smooth [59]. With all heights integers, the smooth phase breaks no lattice
symmetries. So square lattice antiferromagnets with S even integer can have
a paramagnetic ground state with a spin gap and no broken symmetries. The
smooth interface corresponds to confinement in the dual compact U(1) gauge
theory [60]: consequently the za of Z are confined, and the elementary exci-
tations are S = 1 quasiparticles, similar to the ϕα of Sϕ. This is in accord
with the exact ground state for a S = 2 antiferromagnet on the square lattice
found by Affleck et al., the AKLT state [61].

4.1.2 S Half-Odd-Integer

Now the heights of the interface model can take four possible values, which
are integers plus the offsets on the four square sublattices shown in Fig. 9.9a.
As in Sect. 9.4.1.1, the interface is always smooth i.e. any state of (9.50) has
a fixed average interface height

H ≡ 1
Nd

Nd∑

̄=1

〈H̄〉, (9.52)

where the sum is over a large set of Nd dual lattice points which respect the
square lattice symmetry. Any well-defined value for H breaks the uniform
shift symmetry of the height model under which H̄ → H̄±1. In the present
context, only the value of H modulo integers is physically significant, and
so the breaking of the shift symmetry is not important by itself. However,
after accounting for the height offsets, we now prove that any smooth inter-
face must also break a lattice symmetry with the development of bond order:
this means that ZA in (9.44) describes spin gap ground states of the lattice
antiferromagnet which necessarily have spontaneous bond order.

The proof of this central result becomes clear upon a careful study of
the manner in which the height model in (9.50) and (9.51) implements the
90◦ rotation symmetry about a direct square lattice point. Consider such a
rotation under which the dual sublattice points in Fig. 9.9c interchange as

W → X, X → Y, Y → Z, Z →W. (9.53)

The terms in the action in (9.51) will undergo a 90◦ rotation under this
transformation provided the integer heights h̄ transform as
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0 1/4 0 1/4

-1/4 -1/2 -1/4

0 1/4

1/2

0 1/4

Fig. 9.10. Mapping between the quantum dimer model and the interface model
Zh in (9.50). Each dimer on the direct lattice is associated with a step in height of
±3/4 on the link of the dual lattice that crosses it. All other height steps are ±1/4.
Each dimer represents a singlet valence bond between the sites, as in Fig. 9.2.

hW → hX , hX → hY , hY → hZ , hZ → hW − 1. (9.54)

Notice the all important −1 in the last term—this compensates for the
‘branch cut’ in the values of the offsets X̄ as one goes around a plaquette in
Fig. 9.9c. From (9.54), it is evident that the average height H → H − 1/4
under the 90◦ rotation symmetry under consideration here. Hence, a smooth
interface with a well-defined value of H always breaks this symmetry.

We now make this somewhat abstract discussion more physical by pre-
senting a simple interpretation of the interface model in the language of the
S = 1/2 antiferromagnet [62]. From Fig. 9.9a it is clear that nearest neigh-
bor heights can differ either by 1/4 or 3/4 (modulo integers). To minimize
the action in (9.50), we should choose the interface with the largest possi-
ble number of steps of ±1/4. However, the interface is frustrated, and it is
not possible to make all steps ±1/4 and at least a quarter of the steps must
be ±3/4. Indeed, there is a precise one-to-one mapping between interfaces
with the minimal number of ±3/4 steps (we regard interfaces differing by
a uniform integer shift in all heights as equivalent) and the dimer coverings
of the square lattice: the proof of this claim is illustrated in Fig. 9.10. We
identify each dimer with a singlet valence bond between the spins (the ellip-
ses in Fig. 9.2), and so each interface corresponds to a quantum state with
each spin locked in a singlet valence bond with a particular nearest neighbor.
Fluctuations of the interface in imaginary time between such configurations
correspond to quantum tunneling events between such dimer states, and an
effective Hamiltonian for this is provided by the quantum dimer model [63].
While such an interpretation in terms of the dimer model is appealing, we
should also note that it is not as general as the dual interface model: on
certain lattices, while the collinear paramagnetic state continues to have a
representation as a dual interface model, there is no corresponding dimer
interpretation [64].
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(a) (b)
Fig. 9.11. Sketch of the two simplest possible states with bond order for S =
1/2 on the square lattice: (a) the columnar spin-Peierls states, and (b) plaquette
state. Here the distinct line styles encode the different values of the bond order
parameter Qij in (9.29) on the links. This should be contrasted from Figs. 9.1–
9.4 where the line styles represented distinct values of the exchange constants in
the Hamiltonian. In the present section, the Hamiltonian has the full symmetry of
the square lattice, and the orderings represented above amount to a spontaneous
breaking of the lattice symmetry. Both states above are 4-fold degenerate; an 8-fold
degenerate state, with superposition of the above orders, also appears as a possible
ground state of the generalized interface model. Numerical studies of a number of
two-dimensional quantum antiferromagnets [66–68, 70, 73–75] have found ground
states with spontaneous bond order, similar to the states shown above.

The nature of the possible smooth phases of the interface model are easy to
determine from the above picture and by standard techniques from statistical
theory [20, 62]. As a simple example, the above mapping between interface
heights and dimer coverings allows one to deduce that interfaces with average
height H = 1/8, 3/8, 5/8, 7/8 (modulo integers) correspond to the four-fold
degenerate bond-ordered states in Fig. 9.11a. To see this, select the interface
with h̄ = 0 for all ̄: this interface has the same symmetry as Fig. 9.11a, and
a simple computation summing over sites from (9.51) shows that this state
has average height H = −(0 + 1/4 + 1/2 + 3/4)/4 = −3/8 for S = 1/2. The
remaining three values of H correspond to the three other states obtained
by successive 90◦ rotations of Fig. 9.11a. In a similar manner, interfaces with
H = 0, 1/4, 1/2, 3/4 (modulo integers) correspond to the four-fold degenerate
plaquette bond-ordered states in Fig. 9.11b. A simple example of such an
interface is the “disordered-flat” state [65] in which h̄ = 0 on all sites ̄, except
for the W sublattice which have X̄ = 0; for these sites we have h̄ fluctuate
randomly between h̄ = 0 and h̄ = 1, and independently for different ̄. The
average height of such an interface is H = −((0+1)/2+1/4+1/2+3/4)/4 =
−1/2 for S = 1/2, and the mapping to dimer coverings in Fig. 9.10 shows
easily that such an interface corresponds to the state in Fig. 9.11b. All values
of H other than those quoted above are associated with eight-fold degenerate
bond-ordered states with a superposition of the orders in Fig. 9.11a and b.
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All these phases are expected to support non-zero spin quasiparticle ex-
citations which carry spin S = 1, but not S = 1/2. Despite the local corru-
gation in the interface configuration introduced by the offsets, the interface
remains smooth on the average, and this continues to correspond to confine-
ment in the dual compact U(1) gauge theory [60]. Consequently the spinons
of Fig. 9.3b are confined in pairs. The structure of the resulting S = 1 triplon
quasiparticles is very similar to the excitations of the paramagnetic phase
of the coupled dimer antiferromagnet of Sect. 9.2, as we already noted in
Sect. 9.1.

Support for the class of bond-ordered states described above has appeared
in a number of numerical studies of S = 1/2 antiferromagnets in d = 2
which have succeeded in moving from the small g Néel phase to the large
g paramagnet. These include studies on the honeycomb lattice [66] (duality
mapping on the honeycomb lattice appears in [19]), on the planar pyrochlore
lattice [67,68] (duality mapping for a lattice with the symmetry of the planar
pyrochlore is in [64, 69], with a prediction for the bond order observed), on
square lattice models with ring-exchange and easy-plane spin symmetry [70]
(duality mapping on spin models with easy plane symmetry is in [52,71,72]),
and square lattice models with SU(N) symmetry [73] (the theories (9.40),
with a = 1 . . . N , and (9.50) apply unchanged to SU(N) antiferromagnets).
The case of the square lattice antiferromagnet with first and second neighbor
exchange is not conclusively settled: while two recent studies [74, 75] (and
earlier work [25,76]) do observe bond order in a paramagnetic spin-gap state,
a third [77] has so far not found such order. It is possible that this last study is
observing signatures of the critical point between the Néel and bond-ordered
states (to be described in Sect. 9.4.2) which is expressed in a theory for
deconfined spinons in Zc in (9.55).

Finally, we also mention that evidence for the spontaneous bond order
of Fig. 9.11 appears in recent numerical studies of doped antiferromagnets
[78,79].

4.1.3 S Odd Integer

This case is similar to that S half-odd-integer, and we will not consider it in
detail. The Berry phases again induce bond order in the spin gap state, but
this order need only lead to a two-fold degeneracy.

9.4.2 Critical Theory

We turn finally to the very difficult issue of the nature of the quantum phase
transition from the Néel state to one of the bond-ordered paramagnetic sta-
tes in Fig. 9.10 as a function of increasing g. This has been a long-standing
open problem, and many different proposals have been made. The two phases
break different symmetries of the Hamiltonian, and so are characterized by
very different order parameters (one lives in spin space, and the other in real
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space). Landau-Ginzburg-Wilson (LGW) theory would imply that a generic
second-order transition is not possible between such phases, and one obtains
either a first-order transition or a region of co-existence of the two orders.
However, the bond-order in the paramagnet was obtained entirely from quan-
tum Berry phases attached to the fluctuating Néel order, and it is not clear
that LGW theory applies in such a situation.

Recent work by Senthil et al. [80, 81] has proposed an elegant resolution
to many of these problems, and we will describe their results in the remainder
of this subsection. The results are based upon solutions of a series of simpler
models which strongly suggest that related results also apply to the SU(2)
invariant, S = 1/2 models of interest. The computations are intricate, but the
final results are quite easy to state, and are presented below. We will mainly
limit our discussion here to the case of antiferromagnets of spin S = 1/2.

First, contrary to the predictions of LGW theory, a generic second-order
transition between the Néel state and the bond-ordered paramagnet is indeed
possible (let us assume it occurs at g = gc for Z in (9.40)). The theory for
such a quantum critical point is obtained simply by taking a naive continuum
limit of Z while ignoring both the compactness of the gauge field and the
Berry phases. Remarkably, these complications of the lattice model Z, which
we have so far stated were essential for the complete theory, have effects
which cancel each other out, but only at the critical point. Note compactness
on its own is a relevant perturbation which cannot be ignored i.e. without
Berry phases, the compact and non-compact lattice CP1 model have distinct
critical theories [82]. However, the surprising new point noted by Senthil et
al. [80, 81] is that the non-compact CP1 model has the same critical theory
as the compact CP1 model with S = 1/2 Berry phases. Taking the naive
continuum limit of Z in (9.40), and softening the hard-constraint on the zja,
we obtain the proposed theory for the quantum critical point between the
Néel state and the bond-ordered paramagnet for spin S = 1/2 [80,81]:

Zc =
∫
Dza(r, τ)DAµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iAµ)za|2 + s|za|2

+
u

2
(|za|2)2 +

1
4e2

(εµνλ∂νAλ)2
])

. (9.55)

We have also included here a kinetic term for the Aµ, and one can imagine
that this is generated by integrating out large momentum zja. On its own, Zc

describes the transition from a magnetically ordered phase with za condensed
at s < sc, to a disordered state with a gapless U(1) photon at s > sc (here
sc is the critical point of Zc). Clearly the s < sc phase corresponds to the
Néel phase of Z in (9.40) for g < gc. However, the s > sc phase does not
obviously correspond to the g > gc bond-ordered, fully gapped, paramagnet
of Z. This is repaired by accounting for the compactness of the gauge field
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and the Berry phases: it is no longer possible to neglect them, while it was
safe to do so precisely at g = gc. The combined effects of compactness and
Berry phases are therefore dangerously irrelevant at g = gc.

It is important to note that the critical theory of (9.55) is distinct from
the critical theory Sϕ in (9.12), although both theories have a global O(3)
symmetry [82]. In particular the values of the exponents ν are different in
the two theories, and the scaling dimension of the Néel order parameter ϕα

under Sϕ is distinct from the scaling dimension of the Néel order parameter
z∗

aσ
α
abzb at the critical point of Zc.
It is interesting that Zc in (9.55) is a theory for the S = 1/2 spinors za.

These can be understood to be the continuum realization of the spinons shown
earlier in Fig. 9.3b. Thus the spinons become the proper elementary degrees
of freedom, but only at the quantum critical point. Hence it is appropriate
to label this as a ‘deconfined quantum critical point’ [80]. These spinons are
confined into a S = 1 quasiparticle once bond order appears for g > gc, for
reasons similar to those illustrated in Fig. 9.3b.

A key characteristic of this ‘deconfined’ critical point is the irrelevance of
the compactness of the gauge field, and hence of monopole tunnelling events.
A consequence of this is that the flux of the Aµ gauge field in Zc is conserved.
This emergent conservation law, and the associated long-range gauge forces
are key characteristics of such critical points.

We summarize in Fig. 9.12 our results for S = 1/2 square lattice antifer-
romagnets, as described by Z in (9.40).

The claims above for the conspiracy between the compactness and Berry
phases at the critical point are surprising and new. They are central to a com-
plete understanding of square lattice antiferromagnets, and a full justification
of the claims appears in the work of Senthil et al.. The following subsections
illustrate their origin by considering a series of models, of increasing comple-
xity, where similar phenomena can be shown to occur. The reader may also
find it useful to look ahead to Tables 1 and 2, which summarize the intricate
relationships between the models considered.

4.2.1 Lattice Model at N = 1

This subsection describes a simplified lattice gauge theory model introduced
by Sachdev and Jalabert [51]. While the duality analysis presented below was
initiated in [51], its correct physical interpretation, and the implications for
more general models are due to Senthil et al. [80, 81].

The model of interest in this subsection is the N = 1 case of Z. Physically,
such a model will be appropriate for an antiferromagnet in the presence of
a staggered magnetic field: such a field will prefer z↑ over z↓ (say). So we
write the preferred single component complex scalar simply as zj = eiθj , and
obtain from (9.40)
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ggc

or

Fig. 9.12. Phase diagram of the model Z in (9.40) of S = 1/2 antiferromagnets
with full square lattice symmetry. There is a Néel phase for g < gc which breaks
spin rotation invariance; it has a doublet of gapless spin wave excitations. The
bond-ordered paramagnet for g > gc preserves spin rotation invariance but breaks
square lattice symmetry; it has a gap to all excitations, and the non-zero spin
excitations are described by S = 1 triplet quasiparticles which are very similar to
the ‘triplons’ discussed in Sect. 9.2.1. The critical point at g = gc is described by
the theory of S = 1/2 ‘spinons’, Zc in (9.55) at its critical point s = sc; note that
this mapping to the spinon theory Zc does not work away from g = gc, and spinons
are confined for all g > gc. A phase diagram like the one above has been used as a
point of departure to obtain a phase diagram for doped Mott insulators [22,83], as
a description of the cuprate superconductors; evidence for spontaneous bond order
in doped antiferromagnets appears in [78,79].

Z1 =
∏

j

∫ 2π

0

dθj

2π

∫ 2π

0

dAjµ

2π
exp

(
1
e2

∑

�

cos (εµνλ∆νAjλ)

+
1
g

∑

j,µ

cos (∆µθj −Ajµ) + i2S
∑

j

ηjAjτ



 . (9.56)

We have chosen here to explicitly include a compact Maxwell term for the
gauge field, as that proves convenient in the description of the duality map-
pings. Note that if we integrate out the θj for large g, then we again obtain
the model ZA in (9.43) which was used to describe the paramagnetic phase
in Sect. 9.4.1. So bond order appears also in the model Z1 at large g. This
bond order disappears as g is reduced, at a transition we will describe below.

Rather than attack Z1 directly, it is useful as a warm-up, and to make
contact with previous work, to consider a sequence of simpler models that
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have been considered in the literature. As we have emphasized, Z1 features
the combined complications of compactness and Berry phases, essential for
a proper description of quantum antiferromagnets. It is the simplest model
in which it can be shown that these complications effectively neutralize one
another at the critical point.

In the following subsection, we make things simpler for ourselves momen-
tarily by dropping both the compactness and the Berry phases. We will then,
in the subsequent subsections, add these complications back in.

A. XY Model with a Non-compact U(1) Gauge Field

Dropping both compactness and Berry phases, Z1 reduces to

ZSC =
∏

j

∫ 2π

0

dθj

2π

∫ ∞

−∞
dAjµ exp

(
− 1

2e2
∑

�

(εµνλ∆νAjλ)2

+
1
g

∑

j,µ

cos (∆µθj −Ajµ)



 . (9.57)

Notice that the Maxwell term for the gauge field now has a simple Gaussian
form. This is simply the lattice, classical, Ginzburg-Landau model (or an XY
model) of a superconductor at finite temperatures coupled to electromagne-
tism. This model has been studied extensively in the past, and the key result
was provided by Dasgupta and Halperin [84]. As we review below, they sho-
wed that ZSC exhibited an inverted XY transition i.e. it was dual to the
theory of a complex scalar ψ in the absence of a gauge field:

ZSC,dual =
∫
Dψ(r, τ) exp

(
−
∫

d2rdτ

(
|∂µψ|2 + s|ψ|2 +

u

2
|ψ|4

))
. (9.58)

The field ψ is a creation operator for vortices in the original theory of the
Ginzburg-Landau superconductor. These have a short-range interaction (u
above) because of the screening provided by the electromagnetic flux quantum
attached to every vortex in (9.57). So the vortex loops of (9.57) behave like
the world lines of the dual boson field of (9.58). The tuning parameter s
in (9.58) is ‘inverted’ from the perspective of the direct theory: the s < sc

phase with 〈ψ〉 �= 0 has a vortex condensate and so is the normal state of a
Ginzburg-Landau superconductor, while the s > sc phase with 〈ψ〉 = 0 has
the vortices gapped as in the superconducting phase.

We now provide a few steps in the analysis which links (9.57) to (9.58).
The steps are very similar to those described in Sect. 9.4.1 below (9.43) and
(9.44). We write the cosine in (9.57) in its Villain form, decouple it by the
Poisson summation formula using integer currents Jjµ, and also decouple the
Maxwell term by a Hubbard-Stratonovich field P̄µ; this yields the analog of
(9.45) for ZSC:
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ZSC,1 =
∏

j

∫ 2π

0

dθj

2π

∫ ∞

−∞
dAjµ

∑

{Jjµ}

∫ ∞

−∞
dP̄µ exp

(
−e

2

2

∑

̄,µ

P 2
̄µ

−g
2

∑

jµ

J2
jµ + i

∑

j

Jjµ (∆µθj −Ajµ) + i
∑

�

εµνλP̄µ∆νAjλ



 . (9.59)

The advantage of this form is that the integrals over θj and Ajµ can be
performed exactly, and they lead to the constraints

∆µJjµ = 0 ; Jjµ = εµνλ∆νP̄λ. (9.60)

We solve these constraints by writing

Jjµ = εµνλ∆νb̄λ ; P̄µ = b̄µ −∆µϕ̄, (9.61)

where b̄µ is an integer valued field on the links of the dual lattice, and ϕ̄ is
a real valued field on the sites of the dual lattice. This transforms (9.59) to

ZSC,2 =
∏

̄

∫ ∞

−∞
dϕ̄

∑

{b̄µ}
exp

(
−e

2

2

∑

̄,µ

(b̄µ −∆µϕ̄)
2

−g
2

∑

�

(εµνλ∆νb̄λ)2
)

; (9.62)

precisely this dual form was obtained by Dasgupta and Halperin [84], and
used by them for numerical simulations. We proceed further analytically,
using methods familiar in the theory of duality mappings [57]: we promote
the integer valued b̄µ to a real field by the Poisson summation method, and
introduce, by hand, a vortex fugacity yv. This transforms ZSC,2 to

ZSC,3 =
∏

̄

∫ ∞

−∞
db̄µ

∫ ∞

−∞
dϕ̄

∫ ∞

−∞
dϑ̄ exp

(
−e

2

2

∑

̄,µ

(b̄µ −∆µϕ̄)
2

−g
2

∑

�

(εµνλ∆νb̄λ)2 + yv

∑

̄,µ

cos (2πb̄µ −∆µϑ̄)

)
. (9.63)

Notice that the effect of the vortex fugacity is to yield the least action when
b̄µ is an integer (ignore ϑ̄ momentarily): so we have effectively ‘softened’
the integer constraint on b̄µ. We have also introduced here a new real valued
field ϑ̄ on the sites of the dual lattice simply to make the ZSC,3 invariant
under U(1) gauge transformations of b̄µ. This is mainly because the physics
is clearer in this explicitly gauge-invariant form. We could, if we had wished,
also chosen a gauge in which ϑ̄ = 0, and then the field ϑ̄ would not be present
in ZSC,3 (this justifies neglect of ϑ̄ above). In the complete form in (9.63), it
is clear from the first two Gaussian terms that fluctuations of the b̄µ gauge
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field have been ‘Higgsed’ by the real field ϕ̄. Indeed, it is more convenient
to choose a gauge in which ϕ̄ = 0, and we do so. Now the fluctuations of b̄µ
are ‘massive’ and so can be safely integrated out. To leading order in yv, this
involves simply replacing b̄µ with the saddle point value obtained from the
first two Gaussian terms, which is b̄µ = 0. So we have the very simple final
theory

ZSC,4 =
∏

̄

∫ ∞

−∞
dϑ̄ exp

(
yv

∑

̄,µ

cos (∆µϑ̄)

)
, (9.64)

which has the form of the dual XY model. We now take the continuum
limit of (9.64) by a standard procedure [85] of introducing a complex field ψ
conjugate to eiϑ̄ , and obtain the theory ZSC,dual as promised. This establishes
the duality mapping of Dasgupta and Halperin [84].

B. XY Model with a Compact U(1) Gauge Field

Now we ease towards our aim of a duality analysis of Z1, by adding one layer
of complexity to ZSC. We make the gauge field in (9.57) compact by including
a cosine Maxwell term [86]:

ZM =
∏

j

∫ 2π

0

dθj

2π

∫ 2π

0

dAjµ

2π
exp

(
1
e2

∑

�

cos (εµνλ∆νAjλ)

+
1
g

∑

j,µ

cos (∆µθj −Ajµ)



 . (9.65)

The Dasgupta-Halperin duality mapping can be easily extended to this
theory. We now write both cosine terms in their Villain forms, and then
proceed as described above. The results (9.59) and (9.62) continue to have
the same form, with the only change being that the fields P̄µ and ϕ̄ are now
also integer valued (and so must be summed over). Promoting these integer
valued fields to real fields by the Poisson summation method following [57],
we now have to introduce two fugacities: a vortex fugacity yv (as before),
and a monopole fugacity ỹm (discussed below). Consequently, ZSC,3 in (9.63)
now takes the form

ZM,3 =
∏

̄

∫ ∞

−∞
db̄µ

∫ ∞

−∞
dϕ̄

∫ ∞

−∞
dϑ̄ exp

(
−e

2

2

∑

̄,µ

(b̄µ −∆µϕ̄)
2

− g

2

∑

�

(εµνλ∆νb̄λ)2 + yv

∑

̄,µ

cos (2πb̄µ −∆µϑ̄)

+ỹm

∑

̄

cos (2πϕ̄ − ϑ̄)

)
. (9.66)
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Again, the positions of the ϑ̄ above are dictated by gauge invariance, and
the effect of the vortex and monopole fugacities is to soften the integer value
constraints on the b̄µ and ϕ̄. Proceeding as described below (9.63), we work
in the gauge ϕ̄ = 0, and to leading order in yv, ỹm replace b̄µ by its saddle
point value in the Gaussian part of the action, which remains b̄µ = 0. Then,
instead of (9.64), we obtain

ZM,4 =
∏

̄

∫ ∞

−∞
dϑ̄ exp

(
yv

∑

̄,µ

cos (∆µϑ̄) + ỹm

∑

̄

cos (ϑ̄)

)
. (9.67)

We see that the new second term in (9.67) acts like an ordering field on
the dual XY model. Taking the continuum limit as was done below (9.64)
using [85] a complex field ψ conjugate to eiϑ̄ , now instead of ZSC,dual in
(9.58) we obtain [87,88]

ZM,dual =
∫
Dψ(r, τ) exp

(
−
∫

d2rdτ

(
|∂µψ|2 + s|ψ|2

+
u

2
|ψ|4 − ym(ψ + ψ∗)

))
. (9.68)

The new term proportional to ym has the interpretation of a monopole fuga-
city. The compact gauge field now permits Dirac monopoles, which are points
in spacetime at which vortex loops of the ‘superconductor’ can end: hence
ym is coupled to the creation and annihilation operators for the dual boson
ψ i.e. the vortices. In the form (9.68) it is also clear that ym acts like an
ordering field in the dual XY model. We expect that such an XY model has
no phase transition, and 〈ψ〉 �= 0 for all s. So the presence of monopoles has
destroyed the ‘superconducting’ phase. Comparing the properties of (9.58)
and (9.68) we therefore conclude that making the gauge field compact in
ZSC in (9.57) is a strongly relevant perturbation: the inverted XY transition
of ZSC is destroyed in the resulting model ZM .

C. Berry Phases

We are finally ready to face Z1, and add in the final layer of complication
of the Berry phases. Again, the Dasgupta-Halperin duality can be extended
by combining it with the methods of Sect. 9.4.1 (this was partly discussed
in [51]). Now the monopoles carry Berry phases [19, 89], and these lead to
cancellations among many monopole configurations. In the long-wavelength
limit it turns out that the only important configurations are those in which
the total monopole magnetic charge is q times the charge of the elementary
monopole [19,20,89]. Here q is the smallest positive integer such that
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eiπSq = 1, (9.69)

i.e. q = 4 for S half an odd integer, q = 2 for S an odd integer, and q = 1 for
S an even integer. Using the physical interpretation of (9.68), we therefore
conclude that the monopole fugacity term should be replaced by one in which
the monopoles are created and annihilated in multiples of q; the dual theory
of Z1 in (9.56) then becomes

Z1,dual =
∫
Dψ(r, τ) exp

(
−
∫

d2rdτ

(
|∂µψ|2 + s|ψ|2

+
u

2
|ψ|4 − ymq(ψq + ψ∗q)

))
.(9.70)

An explicit derivation of the mapping from Z1 to Z1,dual can be obtained
by an extension of the methods described above for ZSC and ZM . We express
the Berry phase term using the ‘background field’ a0

̄µ in (9.46), and then we
find that ZSC,2 in (9.62) is now replaced by

Z1,2 =
∑

{b̄µ}

∑

{ϕ̄}
exp

(
−e

2

2

∑

̄,µ

(
b̄µ −∆µϕ̄ − 2Sa0

̄µ

)2

−g
2

∑

�

(εµνλ∆νb̄λ)2
)
. (9.71)

Notice that, as in Sect. 9.4.1, the Berry phases appear as offsets in the dual
action. We now promote the integer field b̄µ and ϕ̄ to real fields by the
Poisson summation method (just as in (9.66)), at the cost of introducing vor-
tex and monopole fugacities. The final steps, following the procedure below
(9.66), are to transform to the gauge ϕ̄ = 0, and to then set the ‘Higgsed’
dual gauge field b̄µ to its saddle point value determined from the Gaussian
terms in the action. It is the latter step which is now different, and the pre-
sence of the a0

̄µ now implies that the saddle point value b̄µ will be non-zero
and site dependent. Indeed, it is crucial that the saddle point be determi-
ned with great care, and that the square lattice symmetry of the underlying
problem be fully respected. This saddle point determination is in many ways
analogous to the computation in Sect. III.B of [20], and it is important that
all the modes on the lattice scale be fully identified in a similar manner. The
similarity to [20] becomes clear after using the parameterization in (9.49) for
a0

̄µ in terms of the X̄ and the Yjµ shown in Fig. 9.9. Finally, after trans-
forming b̄µ → b̄µ + 2S∆µX̄ and ϑ̄ → ϑ̄ + 4πSX̄, we obtain from (9.71)
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Z1,3 =
∏

̄

∫ ∞

−∞
db̄µ

∫ ∞

−∞
dϑ̄ exp

(
−e

2

2

∑

̄,µ

(b̄µ − 2Sεµνλ∆νYλ)2

− g

2

∑

�

(εµνλ∆νb̄λ)2 + yv

∑

̄,µ

cos (2πb̄µ −∆µϑ̄)

+ỹm

∑

̄

cos (ϑ̄ + 4πSX̄)

)
. (9.72)

Now, the saddle point value of the massive field b̄µ is easily determined from
the first terms in (9.72), yielding

b̄µ = αεµνλ∆νYjλ. (9.73)

where α ≡ 2Se2/(e2 + 8g). Note that only the spatial components of b̄µ are
non-zero, and these have the simple structure of Fig. 9.9c. In particular, the
magnitude of the b̄µ are the same on all the spatial links, and the use of
(9.49) was crucial in obtaining this appealing result. With this saddle point
value, (9.72) simplifies to the following model for the field ϑ̄ only (this is the
form of (9.67) after accounting for Berry phases):

Z1,4 =
∏

̄

∫ ∞

−∞
dϑ̄ exp

(
yv

∑

̄,µ

cos
(
∆µϑ̄ − 2πb̄µ

)

+ỹm

∑

̄

cos (ϑ̄ + 4πSX̄)

)
. (9.74)

The most important property of this dual XY model is the nature of the
ordering field in the last term of (9.74). For S = 1/2, notice from Fig. 9.9a
that this field is oriented north/east/south/west on the four sublattices in of
the dual lattice in Fig. 9.9c. So if we take a naive continuum limit, the average
field vanishes! This is the key effect responsible for the cancellations among
monopole configurations induced by Berry phases noted earlier; in the dual
formulation, the Berry phases have appeared in differing orientations of the
dual ordering field. The XY model in (9.74) also has the contribution from
b̄µ, which appear as a ‘staggered flux’ acting on the ϑ̄ (see Fig. 9.9c), but
we now show that this is not as crucial in the continuum limit.

Before we take the continuum limit of Z1,4, we discuss its implementation
of the square lattice symmetries. In particular, we are interested in the Z4
symmetry which rotates the four sublattices in Fig. 9.9c into each other,
as the values of X̄ seem to distinguish between them. Let us consider the
symmetry Rn which rotates lattice anticlockwise by an angle nπ/2 about the
direct lattice point at the center of a plaquette in Fig. 9.9c, associated with
the transformation in (9.53). It is easy to see that Z1,4 remains invariant
under Rn provided we simultaneously rotate the angular variables ϑ̄:

Rn : ϑ̄ → ϑ̄ + nSπ. (9.75)
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It is now useful to introduce complex variables which realize irreducible re-
presentations of this Z4 symmetry. We divide the lattice into plaquettes like
those in Fig. 9.9c, and for each plaquette we define variables ψp, with p
integer, by

ψp =
1
2

(
eiϑW + eipπ/2eiϑX + eipπeiϑY + ei3pπ/2eiϑZ

)
. (9.76)

Note that we need only use p = 0, 1, 2, 3 because ψp depends only on
p(mod 4). Under the symmetry Rn we clearly have

Rn : ψp → ein(2S−p)π/2ψp; (9.77)

the factor of einSπ arises from (9.75), and that of e−inpπ/2 from the real-space
rotation of the lattice points. Note that only for p = 2S is ψp invariant under
Rn, and this is consistent with the fact that it is ψ2S which appears in Z1,4 as
the ordering field term. Let us now write the action in Z1,4 in terms of these
new variables. Ignoring the spacetime variation from plaquette to plaquette,
the action per plaquette is

S1,4 = −2yv

3∑

p=0

[
cos (π(p− α)/2) |ψp|2

]
− ỹm (ψ2S + ψ∗

2S) + . . . (9.78)

Here the ellipses represent other allowed terms, all consistent with the sym-
metry (9.77), which must be included to implement the (softened) constraints
on ψp arising from (9.76) and the fact that the eiϑ̄ are unimodular. Apart
from ψ2S , for which there is already an ordering field in the action, the con-
densation of any of the other ψp breaks the lattice symmetry (9.77), and
so drives a quantum phase transition to the bond-ordered state. The choice
among the ψp is controlled by the coefficient of the yv term in (9.78), and
we choose the value of p �= 2S for which cos (π(α+ p)/2) is a maximum. We
are interested in the large g paramagnetic phase, and here α is small, and
the appropriate value is p = 0. The resulting continuum theory for ψ = ψ0
then must be invariant under (9.77), and it is easily seen that this has just
the form Z1,dual in (9.70) with q determined by (9.69). Other choices of p
for the order parameter lead to different types of bond order, with a ground
state degeneracy smaller or larger than the q in (9.69); such states have par-
tial or additional bond order, and are clearly possible in general. However,
our analysis of the paramagnetic states in Sect. 9.4.1 indicates that a choice
ψ = ψp�=0 is unlikely for the models under consideration here, and we will
not consider this case further here.

We have now completed our promised derivation of the model Z1,dual in
(9.70) dual to the N = 1 lattice gauge theory model Z1 in (9.56). Rather
than being an XY model in a field (as in (9.68)), Z1,dual is an XY model
with a q-fold anisotropy. This anisotropy encapsulates the q-fold binding of
monopoles claimed earlier. In the language of (9.74) the average ordering
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Table 9.1. Summary of the duality mappings for N = 1. Only the Lagrangean’s
are specified, and a summation/integration of these over spacetimes is implicit. The
fixed field ηj = ±1 in the Berry phase in the third row is the sublattice staggering
factor in (9.2). The integer q in the third row is specified in (9.69). For S = 1/2,
we have q = 4, and then the ymq perturbation is dangerously irrelevant. Hence the
critical theory for the model with monopoles and Berry phases in the third row, is
identical to that for the first row

N = 1

Direct lattice model Dual model

LSC = (1/(2e2)) (εµνλ∆νAjλ)2

− (1/g) cos (∆µθj −Ajµ)
LSC,dual = |∂µψ|2 + s|ψ|2 +

u

2
|ψ|4

LM = −(1/e2) cos (εµνλ∆νAjλ)

− (1/g) cos (∆µθj −Ajµ)
LM,dual = |∂µψ|2 + s|ψ|2 +

u

2
|ψ|4

− ym(ψ + ψ∗)

L1 = −(1/e2) cos (εµνλ∆νAjλ)

− (1/g) cos (∆µθj −Ajµ) − i2SηjAjτ

L1,dual = |∂µψ|2 + s|ψ|2 +
u

2
|ψ|4

− ymq(ψq + ψ∗q)

fields on the ϑ̄ oscillate from site to site and cancel out, and only the q-
th moment of the field survives. Now the combined effect of the monopoles
and Berry phases in Z1 is decided by the term proportional to ymq. In the
paramagnetic phase of the direct model, which is s < sc and 〈ψ〉 �= 0, this
q-fold anisotropy is certainly very important. For S = 1/2, q = 4 it orders
the ψ field along four particular angles, and these are easily shown to be [51]
one of the four degenerate bond-ordered states in Fig. 9.11. However, at the
critical point s = sc it is known that this 4-fold anisotropy is irrelevant [90]:
so in Z1,dual the monopoles can be neglected at the critical point s = sc, but
not away from it.

We have now achieved the desired objective of this subsection. Compac-
tness alone was a strongly relevant perturbation on the model of a scalar field
coupled to electromagnetism in ZSC. However, when we combined compactn-
ess with the Berry phases in Z1, then we found that the monopoles effectively
cancelled each other out at the critical point for S = 1/2. Consequently the
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theory for the critical point in Z1 is identical to the theory for the critical
point in ZSC, and this is the simple inverted XY model ZSC,dual in (9.58).
The results of this subsection are summarized in Table 1.

4.2.2 Easy Plane Model at N = 2

A second explicit example of the remarkable phenomenon described above
is provided by the physically relevant N = 2 case of the model of central
interest, Z in (9.40), but in the presence of an additional spin-anisotropy
term preferring that the spins lie within the XY plane. In such a situation,
we may write the complex spinor zja as

zja =
1√
2

(
eiθj↑

eiθj↓

)
, (9.79)

so that the action is expressed in terms of two angular fields, θ↑ and θ↓.
Inserting (9.79) in (9.40), we obtain a generalization of the N = 1 model Z1
in (9.56):

Z2 =
∏

j

∫ 2π

0

dθj↑
2π

∫ 2π

0

dθj↓
2π

∫ 2π

0

dAjµ

2π
exp

(
1
e2

∑

�

cos (εµνλ∆νAjλ)

+
1
2g

∑

j,µ,a

cos (∆µθja −Ajµ) + i2S
∑

j

ηjAjτ



 . (9.80)

As in (9.56), we have chosen to explicitly include a Maxwell term for the U(1)
gauge field as it proves convenient in the subsequent duality analysis. The
model Z2 provides a complete description of the phases of the square lattice
antiferromagnet (9.28) with an additional easy-plane anisotropy term.

We can now proceed with a duality analysis of (9.80) using methods pre-
cisely analogous to those discussed in Sect. 9.4.2.1: the only difference is we
now have two angular fields θa=↑,↓, and so certain fields come with two co-
pies. We will therefore not present any details, and simply state the series
of results which appear here, which closely parallel those obtained above for
N = 1.

• Neglecting both compactness of the U(1) gauge field and the Berry phases,
it is straightforward to take the continuum limit of Z2 in its direct repre-
sentation, and we obtain the theory Zc in (9.55), but with an additional
spin-anisotropy term

Z2c =
∫
Dza(r, τ)DAµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iAµ)za|2 + s|za|2

+
u

2
(|za|2)2 + v|z↑|2|z↓|2 +

1
4e2

(εµνλ∂νAλ)2
])

, (9.81)
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where v > 0 prefers spins in the easy plane. We can carry through the
analog of the duality mapping between (9.57) and (9.58), and instead of
(9.58) we now obtain a theory for two dual fields ψa representing vortices
in θ↑ and θ↓ [82]

Z2c,dual =
∫
Dψa(r, τ)DBµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iBµ)ψ↑|2

+ |(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2 + v|ψ↑|2|ψ↓|2

+
1

4e2
(εµνλ∂νBλ)2

])
. (9.82)

Note that there is now a non-compact U(1) gauge field Bµ which survives
the continuum limit: this field arises from the analog of the field b̄µ in
(9.63), and here it is not completely Higgsed out. The most remarkable
property of (9.82) is that it is identical in structure to (9.81): the actions
are identical under the mapping z↑ → ψ↑, z↓ → ψ∗

↓ , and Aµ → Bµ. In
other words, the theory Z2c is self-dual [82].

• As in Sect. 9.4.2.1, we next make the Aµ gauge field compact, but continue
to ignore Berry phases i.e. we perform a duality analysis on (9.80), in the
absence of the last term in the action. Now, instead of (9.68), (9.82) is
modified to

Z2M,dual =
∫
Dψa(r, τ)DBµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iBµ)ψ↑|2

+ |(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2 + v|ψ↑|2|ψ↓|2

+
1

4e2
(εµνλ∂νBλ)2 − ym(ψ↑ψ↓ + ψ∗

↓ψ
∗
↑)
])

. (9.83)

The last term represents the influence of monopoles, and these now have
the effect of turning a ψ↑ vortex into a ψ↓ vortex [80–82]. Again, as in
(9.68), the ym term in (9.83) is clearly a strongly relevant perturbation
to Z2c,dual in (9.82). It ties the phases of ψ↑ and ψ↓ to each other, so
that (9.83) is effectively the theory of a single complex scalar coupled to
a non-compact U(1) gauge field Bµ. However, we have already considered
such a theory in the direct representation in (9.57). We can now move
from the dual representation in (9.83) back to the direct representation,
by the mapping between (9.57) and (9.58). This leads to the conclusion,
finally, that the theory (9.83) is dual to an ordinary XY model. In other
words, the theory Z2 in (9.80) without its Berry phase term is an XY
model. However, this is precisely the expected conclusion, and could have
been easily reached without this elaborate series of duality mappings: just
integrating over Ajµ for large e2 yields an XY model in the angular field
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θ↑ − θ↓, which represents the orientation of the physical in-plane Néel
order.

• Finally, let us look at the complete theory Z2. An explicit duality mapping
can be carried out, and as in (9.70), the action (9.83) is replaced by
[52,71,80,81]

Z2M,dual =
∫
Dψa(r, τ)DBµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iBµ)ψ↑|2

+ |(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2 + v|ψ↑|2|ψ↓|2

+
1

4e2
(εµνλ∂νBλ)2 − ymq

(
(ψ↑ψ↓)

q +
(
ψ∗

↓ψ
∗
↑
)q)
])

, (9.84)

where the integer q was defined in (9.69). The subsequent reasoning is the
precise analog of that for N = 1. For S = 1/2 and q = 4, the term pro-
portional to ymq representing q-fold monopole is irrelevant at the critical
point (but not away from it in the paramagnetic phase). Consequently, the
critical theory of (9.84) reduces to (9.82). So just as at N = 1, the com-
bined influence of monopoles and Berry phases is dangerously irrelevant
at the critical point, and for the critical theory we can take a naive conti-
nuum limit of Z2 neglecting both the Berry phases and the compactness
of the gauge field.

We have now completed our discussion of the N = 2 easy plane model
and established the existence of the same remarkable phenomenon found in
Sect. 9.4.2.1 for N = 1, and claimed more generally [80,81] at the beginning
of Sect. 9.4.2 as the justification for the critical theory (9.55). As we saw in
some detail in Sect. 9.4.1, monopoles, and attendant Berry phases, are ab-
solutely crucial in understanding the onset of confinement and bond order
in the paramagnetic phase. However, for S = 1/2, the Berry phases induce
a destructive quantum interference between the monopoles at the quantum
critical point, leading to a critical theory with ‘deconfined’ spinons and a
non-compact U(1) gauge field which does not allow monopoles. These results
are summarized in Table 2.

The results in Tables 1 and 2 can be generalized to arbitrary values of
N , for models with the analog of an ‘easy plane’ anisotropy: as in (9.79), all
the za have equal modulus and are expressed in terms of a = 1 . . . N angles
θa. The dual models have N vortex fields ψa, and N − 1 non-compact U(1)
gauge fields Bbµ, b = 1 . . . (N − 1). For a = 1 . . . (N − 1), the field ψa has a
charge +1 under the gauge field with b = a, and is neutral under all gauge
fields with b �= a. For a = N , the field ψN , has a charge −1 under all N − 1
gauge fields. (This gauge structure is similar to that found in ‘moose’ field
theories [91].) The dual representation of the monopole operator is

∏N
a=1 ψa,

and this appears as the coefficient of ym (notice that this operator is neutral
under all the gauge fields). The qth power of this operator appears as the
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Table 9.2. As in Table 1, but for the N = 2 easy plane case. The index a extends
over the two values ↑, ↓. Again for S = 1/2, q = 4, the critical theory for the
third row is the same as that for the first row. The dual model in the second row
is effectively the theory of a single complex scalar coupled to a non-compact U(1)
gauge field Bµ; by the inverse of the duality mapping in the first row of Table 1,
this theory has a direct XY transition

N = 2, easy plane

Direct lattice model Dual model

L2,SC = (1/(2e2)) (εµνλ∆νAjλ)2

− (1/g) cos (∆µθja −Ajµ)

L2SC,dual = |(∂µ − iBµ)ψ↑|2

+|(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(
|ψa|2

)2

+v|ψ↑|2|ψ↓|2 +
1

2e2
(εµνλ∂νBλ)2

L2M = −(1/e2) cos (εµνλ∆νAjλ)

− (1/(2g)) cos (∆µθja −Ajµ)

L2M,dual = |(∂µ − iBµ)ψ↑|2

+|(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(
|ψa|2

)2

+v|ψ↑|2|ψ↓|2 +
1

2e2
(εµνλ∂νBλ)2

− ym

(
ψ↑ψ↓ + ψ∗

↑ψ
∗
↓
)

L2 = −(1/e2) cos (εµνλ∆νAjλ)

−(1/g) cos (∆µθja −Ajµ) − i2SηjAjτ

L2,dual = |(∂µ − iBµ)ψ↑|2

+|(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(
|ψa|2

)2

+v|ψ↑|2|ψ↓|2 +
1

2e2
(εµνλ∂νBλ)2

− ymq

(
(ψ↑ψ↓)q +

(
ψ∗

↑ψ
∗
↓
)q)

coefficient of ymq. Note that the monopole operators involves a product of
N fields, and for large enough N , both ym and ymq can be expected to be
irrelevant perturbations at the quantum critical point.

Finally, these analyses of Z in (9.40) can be complemented by a study of
its N → ∞ limit, without any easy-plane anisotropy. This was carried out
some time ago [51, 92], and it was found that monopoles were dangerously
irrelevant at the quantum critical point, both with or without Berry phases
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(as noted above for large N in the easy plane case). It is important to note
that the situation at large N is subtly different from that for N = 1, 2: in the
latter case, monopoles are dangerously irrelevant in the presence of S = 1/2
Berry phases, but relevant without Berry phases. The key understanding of
this distinction emerged in the recent work of Senthil et al. [80, 81], which
finally succeeded in placing the earlier large N results within the context of
dual theories of topological defects in statistical mechanics.

9.5 Triangular Lattice Antiferromagnet

We continue our analysis of quantum antiferromagnets with an odd number
of S = 1/2 spins per unit cell, but consider a class qualitatively different from
those in Sect. 9.4. One of the defining properties of the models of Sect. 9.4
was that the magnetically ordered Néel state was defined by (9.2): the aver-
age magnetic moment on all sites were collinear, and only a single vector
n was required to specify the orientation of the ground state. This section
shall consider models in which the moments are non-collinear; the triangular
lattice is the canonical example. However, similar results should also apply
to other two-dimensional lattices with non-collinear ground states, such as
the distorted triangular lattice found in Cs2CuCl4 [11].

We consider the model (9.28), but with the spins residing on the sites
of the triangular lattice. This has a magnetically ordered state illustrated in
Fig. 9.13; for this state (9.2) is replaced by

〈Sj〉 = N0 (n1 cos(Q · r) + n2 sin(Q · r)) . (9.85)

Here Q = 2π(1/3, 1/
√

3) is the ordering wavevector, and n1,2 are two ar-
bitrary orthogonal unit vectors in spin space

n2
1 = n2

2 = 1 ; n1 · n2 = 0. (9.86)

A distinct ground state, breaking spin rotation symmetry, is obtained for
each choice of n1,2.

We now wish to allow the values of n1,2 to fluctuate quantum mechanically
across spacetime, ultimately producing a paramagnetic state. As in Sect. 9.4,
we should account for the Berry phases of each spin while setting up the
effective action: an approach for doing this is presented in Sect. VI of [52].
However, the full structure of the critical theory is not understood in all cases,
as we describe below.

One possible structure of the paramagnetic state is a confining, bond-
ordered state, similar to that found in Sect. 9.4. However, there is no com-
plete theory for a possible direct second-order transition from a non-collinear
magnetically ordered state to such a paramagnet. Ignoring Berry phases, one
could define the complex field Φα = n1α + in2α, which, by (9.86), obeys
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ssc

Fig. 9.13. Quantum phase transition described by Zw in (9.90) as a function of
s. The state on the left has non-collinear magnetic order described by (9.85). The
state on the right is a ‘resonating valence bond’ (RVB) paramagnet with topological
order and fractionalized S = 1/2 neutral spinon excitations (one spinon is shown
above). Such a magnetically ordered state is observed in Cs2CuCl3 [11, 12], and
there is evidence that the higher energy spectrum can be characterized in terms of
excitations of the RVB state [24].

Φ2
α = 0, and then proceed to write down an effective action with the struc-

ture of (9.14). However, it is clear that such a theory describes a transition
to a paramagnetic phase with a doublet of S = 1 triplet quasiparticles, and
we can reasonably expect that such a phase has spontaneous bond order
(in contrast to the explicit dimerization in the models of Sect. 9.2). Berry
phases surely play an important role in inducing this bond order (as they
did in Sect. 9.4.1), but there is no available theory for how this happens
in the context of (9.14). Indeed, it is possible that there is no such direct
transition between the non-collinear antiferromagnet and the bond-ordered
paramagnet, and resolving this issue remains an important open question.

In contrast, it is possible to write down a simple theory for a direct tran-
sition between the non-collinear antiferromagnet and a paramagnetic phase
not discussed so far: a resonating valence bond liquid [47,48,93] with deconfi-
ned spinons and topological order. This theory is obtained by observing that
the constraints (9.86) can be solved by writing [94,95]

n1 + in2 ≡ εabwbσacwc, (9.87)

where wa is a 2 component complex spinor obeying |w↑|2 + |w↓|2 = 1. It
is useful to compare (9.87) with (9.31), which parameterized a single vector
also in terms of a complex spinor za. Whereas (9.31) was invariant under the
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U(1) gauge transformation (9.32), notice that (9.87) is only invariant under
the Z2 gauge transformation

wa(r, τ) → �(r, τ)wa(r, τ), (9.88)

where �(r, τ) = ±1 is an arbitrary field which generates the gauge transfor-
mation. This Z2 gauge transformation will play an important role in under-
standing the structure of the paramagnetic phase [21–23,96,97].

We can now study fluctuations of the non-collinear antiferromagnet by
expressing the effective action in terms of the wa. Apart from the familiar
constraints of spin rotational invariance, and those imposed by (9.88), the
effective action must also obey the consequences of translational invariance
which follow from (9.85); the action must be invariant under

wa → wae
−iQ·a/2, (9.89)

where a is any triangular lattice vector. In the continuum limit, this leads to
the following effective action

Zw =
∫
Dwa(r, τ) exp

(
−
∫

d2rdτ

[
|∂µwa|2 + s|wa|2 +

u

2
(|wa|2)2

])
;

(9.90)

notice there is a free integration over the wa, and so we have softened the
rigid length constraint. Comparing this with (9.55), we observe that the U(1)
gauge field is now missing, and we simply have a Landau-Ginzburg theory for
a 2 component complex scalar. The Z2 gauge invariance (9.88) plays no role
in this continuum critical theory for the destruction of non-collinear magnetic
order, but as we discuss below, it will play an important role in the analysis
of the paramagnetic phase. The theory (9.90) has a global O(4) invariance
of rotations in the 4-dimensional space consisting of the real and imaginary
parts of the 2 components of wa: consequently the critical exponents of (9.90)
are identical to those of the well known 4-component ϕ4 field theory. Notice
that there is no O(4) invariance in the microscopic theory, and this symmetry
emerges only in the continuum limit [95,98]: the simplest allowed term which
breaks this O(4) invariance is |εabwa∂µwb|2, and this term is easily seen to
be irrelevant at the critical point of the theory (9.90).

Let us now turn to a discussion of the nature of the paramagnetic phase
obtained in the region of large positive s in (9.90). Here, the elementary
excitations are free wa quanta, and these are evidently S = 1/2 spinons. There
is also a neutral, spinless topological excitation [21,22,99] whose importance
was stressed in [97]: this is the ‘vison’ which is intimately linked with the
Z2 gauge symmetry (9.88). It is a point defect which carries Z2 gauge flux.
The vison has an energy gap in the paramagnetic phase, and indeed across
the transition to the magnetically ordered state. This was actually implicit
in our taking the continuum limit to obtain the action (9.90). We assumed
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that all important spin configurations could be described by a smooth, single-
valued field wa(r, τ), and this prohibits vison defects around which the wa

are double-valued. It is also believed that the vison gap allows neglect of
Berry phase effects across the transition described by (9.90): after duality,
the Berry phases can be attached to monopoles and visons [97, 100], and
these are suppressed in both phases of Fig. 9.13.

9.6 Conclusions

This article has described a variety of quantum phases of antiferromagnetic
Mott insulators, and the transitions between them.

Let us first summarize the phases obtained in zero applied magnetic field,
and transitions that can be tuned between them by varying the ratio of
exchange constants in the Hamiltonian (experimentally, this can be achie-
ved by applied pressure). The magnetically ordered states discussed were
the collinear Néel state (shown in Figs. 9.4 and 9.12), and the non-collinear
‘spiral’ (shown in Fig. 9.13). We also found paramagnetic states which preser-
ved spin rotation invariance and which had an energy gap to all excitations:
these include the dimerized states (shown in Figs. 9.2 and 9.4), the related
bond-ordered states which spontaneously break lattice symmetries (shown in
Figs. 9.11 and 9.12), and the ‘resonating valence bond’ paramagnet with to-
pological order and deconfined spinons (shown in Fig. 9.13). The continuous
quantum phase transitions we found between these states were:
(a) the transition between the dimerized paramagnet and the collinear Néel
state (both states shown in Fig. 9.4) was described by the theory Sϕ in (9.12);
(b) the transition between the dimerized paramagnet and a non-collinear ma-
gnetically ordered state was described by SΦ in (9.14);
(c) the transition between the collinear Néel state and the paramagnet with
spontaneous bond order (shown in Fig. 9.12) was described for S = 1/2 an-
tiferromagnets by Zc in (9.55);
(d) the transition between the state with non-collinear magnetic order and
the RVB paramagnet (both states shown in Fig. 9.13) was described by Zw

in (9.90).
We also mention here other quantum transitions of Mott insulators, which

involve distinct paramagnets on both sides of the critical point. These we did
not discuss in the present paper, but such transitions have been discussed in
the literature:
(e) the transition between a paramagnet with spontaneous bond order
(Fig. 9.12) and a RVB paramagnet (Fig. 9.13) is described by a compact
U(1) lattice gauge theory with charge 2 Higgs fields (closely related to Z1 in
(9.56)), and is discussed in [81,100,101];
(f ) transitions between paramagnets with different types of spontaneous bond
order can be mapped onto transitions between different smooth phases of
height models like (9.50), and are discussed in [102,103].
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Section 9.3 also considered quantum transitions that could be tuned by an
applied magnetic field. We mainly considered the case of the coupled-dimer
antiferromagnet, but very similar theories apply to the other states discussed
above. The general theory has the structure of SΨ in (9.24), describing the
Bose-Einstein condensation of the lowest non-zero spin quasiparticle excita-
tion of the paramagnet. For the coupled dimer model this quasiparticle had
S = 1, but an essentially identical theory would apply for cases with S = 1/2
spinon quasiparticles.
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