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We present a unified, global perspective on the magnetic properties of strongly
disordered electronic systems, with special emphasis on the case where the ground
state is metallic. We review the arguments for the instability of the disordered
Fermi liquid state towards the formation of local magnetic moments, and argue
that their singular low temperature thermodynamics are the “quantum Griffiths”
precursors of the quantum phase transition to a metallic spin glass; the local mo-
ment formation is therefore not directly related to the metal-insulator transition.
We also review the the mean-field theory of the disordered Fermi liquid to metallic
spin glass transition and describe the separate regime of “non-Fermi liquid” be-
havior at higher temperatures near the quantum critical point. The relationship
to experimental results on doped semiconductors and heavy-fermion compounds
is noted.

1. Introduction

This paper deals with the rich variety of magnetic phenomena and phases that
appear in strongly disordered and correlated electronic systems in the vicinity of a
metal-insulator transition. In particular, much attention has been focussed on the
ubiquitous “local moments” which appear to dominate the low temperature ther-
modynamics of the disordered metallic state, and also across the metal-insulator
transition into the paramagnetic insulator (Quirt & Marko 1971; Ue & Maekawa
1971; Alloul & Dellouve 1987; Sachdev 1989; Milovanovic et al. 1989; Bhatt &
Fisher 1992; Tusch & Logan 1993, 1995; Lakner et al. 1994; Langenfeld & Wolfle
1995). The principal thesis of this article is that these local moments are not
directly related to the critical degrees of freedom leading to the metal-insulator
transition. Rather, they should be understood as the “quantum Griffiths” pre-
cursors of the transition from a disordered metal to a metallic spin glass.

Below, we will review the basic ideas needed to motivate and explain this thesis.
We will also discuss a recent mean field theory of the transition from the metal
to the metallic spin glass (Sachdev et al. 1995; Sengupta & Georges 1995) and
review its experimental consequences. We will not discuss the metal-insulator
transition in the main part of the paper, but will speculate on the implications
of our ideas for it in the concluding section.
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2 S. Sachdev

2. General considerations at zero temperature

We will phrase our discussion in terms of the following Hamiltonian

H=— Z tijC;raCia + UzniTnil — Z(GZ — /L)C;racia (2.1)
4

1<j,o (e

where c¢;, annihilates an electron on site ¢ with spin o =T, |, and n;, = c;racm.
The sites are placed in three dimensional space and labeled by %, 5. The electrons
are in a chemical potential p and repel each other with the on-site repulsion
energy U. The hopping matrix elements between the sites are the ¢;; which are
short-ranged and possibly random. Finally, we also allow for some randomness in
the on-site energies, ¢;. A Hamiltonian of the form of H is expected to be a good
qualitative, if not quantitative, model of electronic motion in the impurity band
of doped semiconductors, and this fact is the primary reason for focussing on it
here. However, most of the discussion in this section is rather general and should
apply to a wide variety of strongly disordered electronic systems.

We begin with a simple but important question: on general grounds, what are
the different possible ground states of H between which it is possible to make
a sharp distinction ? Here we are considering two states distinct if a thermody-
namic phase transition is required to connect one to the other. Notice also that
we are referring to phases at zero temperature (T') so the phase transitions are
necessarily quantum in nature. In some cases, two phases separated by a quantum
phase transition at zero temperature can be connected smoothly at any nonzero
temperature, and so the sharp distinctions made below are special to T = 0.

Figure 1, shows a schematic 7 = 0 phase diagram of H as its couplings are
varied (an explicit computation of a related phase diagram on a cubic lattice has
been presented by Tusch & Logan (1993,1995)). The phase diagram is a section
in the parameter space of U/t (where t is the mean value of the ¢;;), the width of
the distribution of the ¢;;, the range of the t;;, and the filling fraction. The phases
are distinguished by the behavior of their spin and charge fluctuations. Charge
transport is characterized by the T' = 0 value of the conductivity, o; if ¢ = 0 the
phase is an insulator, and is metallic otherwise. For the spin sector, the uniform
spin susceptibility is not a useful diagnostic (as will become clear below), and we
distinguish phases by whether the ground state has infinite memory of the spin
orientation on a site or not. The time-averaged moment on a given site is denoted
by (S;) (where
Si = claBapcss (2:2)
with & the Pauli matrices) and it can either vanish at every site, or take a non-
zero value which varies randomly from site to site. Experimentally, a phase with

<§z> non-zero will have an elastic delta function at zero frequency in the neutron

scattering cross section. The average over all sites will be denoted by <§Z>, and
will be non-zero only in ferrolmagnetic phases, which we will not consider here.
The four phases in Figure i are:

(1) METALLIC QUANTUM PARAMAGNET (MQP)
More simply known as the familiar ‘metal’, this phase has

c#£0  (S)=o. (2.3)
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Figure 1. Schematic diagram of the T = 0 phaseg of a strongly random electronic system in three
dimensions described e.g. by the Hamiltonian (2_]:) The average moment, (S;), when non-zero,
varies randomly from site to site. The conductivity is denoted by o. The phase diagram is a
section in the parameter space of U/(mean value of the ¢;;), the width of the distribution of the
tij, the range of the ¢;;, and the filling fraction.

The standard picture of this phase is in terms of low energy excitations consist-
ing of spin-1/2, charge e, fermionic, itinerant quasiparticles. The quasiparticles
obey a transport equation as in Landau’s Fermi liquid theory, but have wave
functions which are spatially disordered. Many low temperature transport prop-
erties of these quasiparticles have been computed in a weak disorder expansion
(Altshuler & Aronov 1983; Finkelstein 1983, 1984; Castellani & DiCastro 1985;
Belitz & Kirkpatrick 1994). Here, in Section 3, we will review more recent work
(Milovanovic et al. 1989; Bhatt & Fisher 1992; Lakner et al. 1994; Langenfeld
& Wolfle 1995) that argues that this disordered Fermi liquid is in fact unstable
towards the formation of ‘local moments’ of spin which modify most of its ther-
modynamic properties. A careful definition of a local moment, and its physical
properties will appear in Section B, but loosely speaking, a local moment is a
site with a strongly localized charge e and relatively slow spin fluctuations. The
spin fluctuations, although long-lived, eventually lose memory of their orienta-
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tion, and we always have <§z> = 0. There are large fluctuations in the lifetime
of the spin orientations on the local moment sites, and those with the longest
lifetimes may be considered as the “quantum Griffiths” precursors (defined more
carefully later) of the metallic spin glass to be considered below.

(2) INSULATING QUANTUM PARAMAGNET (IQP)
This phase has

c=0 (S =0 (2.4)
and is accessed by a metal-insulator transition from the MQP phase. The itinerant
quasiparticles have now localized: this prevents them from contributing to a d.c.
conductivity, but many of their thermodynamic effects are expected to be similar
to those in the MQP phase, particularly when the quasiparticle localization length
is large. There is however no sharp distinction between the localized quasiparticles
and the local moments, and at scales larger than the localization length one may
view the IQP simply as a collection of randomly located spins with S = 1/2
and interacting with one another by some effective exchange interaction. There
is a large density of low energy spin excitations, which means that the spin
susceptibility is quite large, and may even diverge as T — 0 (Ma et al. 1979;
Dasgupta & Ma 1980; Hirsch 1980; Bhatt & Lee 1982). This is the reason we
have not used the spin susceptibility as a diagnostic for the phases. An exact

solution of an IQP model with infinite-range exchange was presented recently by
Sachdev & Ye (1993).

(3) METALLIC SPIN GLASS (MSG)
This phase has

c#£0  (S)#0, (2.5)
and is accessed from the MQP by a spin-freezing transition. The local moments
of the MQP phase now acquire a definite orientation, and retain memory of this
orientation for infinite time. The Fermi liquid quasiparticle excitations are still
present and are responsible for the non-zero o; the frozen moments appear as
random local magnetic fields to the itinerant quasiparticles. Alternatively, we
may view the spin-freezing transition as the onset, from the MQP phase, of a
spin density wave with random offsets in its phase and orientation, as appears
to be the case in recent experiments (Lamelas et al. 1995); this suggests the
name “spin density glass”. The spin density glass point of view was explored by
Hertz (1979) some time ago, but he did not focus on the vicinity of the 7" = 0
transition between the MSG and MQP phases. Here, in Section 4 we will review
the recent complete solution for the MSG phase and the MSG-MQP transition in
the infinite range model (Sachdev et al. 1995; Sengupta & Georges 1995), aspects
of the Landau theory for the short range case (Read et al. 1995; Sachdev et al.
1995), and recent experimental realizations. A more detailed review of this phase
may be found elsewhere (Sachdev & Read 1996).

(4) INSULATING SPIN GLASS (ISG)
This phase has

c=0 (S5 #0 (2.6)
Charge fluctuations are unimportant, and the collective frozen spin configuration
is expected to be well described by an effective classical spin model. Examples of
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Strongly disordered magnetic systems 5

phases of this type may be found in well known reviews (Binder & Young 1986;
Fischer & Hertz 1991). We will not have anything to say about this phase here.

Let us emphasize that the above discussion was restricted to 7' = 0, and thus
describes only the ground state properties of H. We will discuss the finite T
properties below. Well away from any of the quantum phase boundaries, the
characteristics of the ground state are usually enough to give us a physical picture
of the low T properties. However, closer to the quantum phase boundaries or at
higher T, entirely new regimes emerge which cannot be understood in terms of any
of the phases describe above; rather, they are characterized by the critical states
at the phase boundaries, and their universal response to temperature (Sachdev
& Ye 1992; Sachdev 1995). This aspect of the physics will be explored in our
discussion of the MQP-MSG quantum phase transition.

3. Formation of local moments in disordered metals

This section is about the magnetic properties of the MQP phase. The popular
“weakly-disordered Fermi liquid” approach to this phase computes its low temper-
ature properties by an expansion in the strength of the random elastic scattering
by impurities (Altshuler & Aronov 1983; Finkelstein 1983, 1984; Castellani &
DiCastro 1985; Belitz & Kirkpatrick 1994). The main purpose of this section is
to show that this weak scattering expansion misses an important piece of physics
that actually dominates the low temperature thermodynamics and spin transport.
The key phenomenon is the local instability of the interacting, disordered, Fermi
liquid to the appearance of magnetic moments whose slow dynamics controls the
long-time spin correlations. An essential property of this instability is that it is
caused by fluctuations in the disorder strength over a small, localized region of
space; it is not related to any development of coherence over large spatial scales. It
may be viewed as another realization of the general class of “quantum Griffiths”
effects which have been very important in numerous recent studies of quantum
phases and phase transitions in random spin systems (Fisher 1992, 1995; Thill &
Huse 1995; Read et al. 1995; Guo et al. 1996; Senthil & Sachdev 1996). In the
present case these Griffiths effects are argued to be precursors of the metallic spin
glass phase. That they disrupt what is usually considered to be an analysis of the
metal-insulator transition is accidental: we argue they are not directly related to
the metal-insulator transition and have clouded a proper interpretation of the-
ories of it. We will begin by defining more carefully what we mean by a local
moment in Section a!. Then, in Section b!, we will describe the current theoretical
understanding of the formation of these local moments in random systems, and
their implications for experiments.

(a) What is a local moment ¢

Unlike the sharply distinguishable zero temperature phases that were discussed
in Section 2, the concept of a local moment initially appears somewhat imprecise,
and refers to intermediate energy phenomena at moderate, nonzero temperatures.
Alternatively, we may take a renormalization group point of view, and introduce
local moments, as one renormalizes down from higher energies, as the degrees of
freedom necessary for a proper description of the low energy excitations about
the ground state. Despite this seeming impreciseness, as we shall see below, the
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6 S. Sachdev

Figure 2. Hopping matrix elements of the single-impurity model considered in Section é: The
dashed lines about the origin represent bonds with t;; = w, while all remaining bonds have
tij =t.

presence of local moments does lead to a qualitatively different description of the
low temperature properties of disordered metals.

To explain the concept further, it is useful to specialize to a particular realiza-
tion of H (Milovanovic et al. 1989): a single impurity model related to models
considered early on by Anderson (1961) and Wolff (1961). Place all the sites, 1,
on the vertices of a regular lattice, and set ¢; = 0, ¢;; = t between all nearest
neighbors, and ?;; = 0 otherwise. Now pick a special ‘impurity’ site : = 0, and
set all its nearest neighbor bonds ¢yp; = w. (See Fig 2). . We choose the chemical
potential u = —U/2 so that the system is half-filled, and the resulting model is
now characterized by two dimensionless parameters: w/t and U/t. We will now
argue, using the results of extensive numerical and analytic studies on closely
related models (Haldane 1978; Krishnamurthy et al. 1980), that there are two
qualitatively distinct regimes in the w/¢t and U/t plane, characterized by very
different behavior in their nonzero temperature properties.

We will characterize the two regions by their local spin susceptibility, x . This
is their response to a magnetic field coupled to the site 0 under which

H

QMQB (C(-I;TCOT — C(-I;lcol) (31)
First consider the very high temperature limit 7' > ¢, U, w. In this case all states
are equally probably. On site 0 there are 4 possible configurations: empty, two
electrons, one spin up electron, and one spin down electron. Of these, the lat-
ter two contribute a standard Curie susceptibility of (gup)?/(4kgT), while the
first two have zero susceptibility. The average high temperature susceptibility is
therefore

H—H—

(QMB)2

8kpT

Now lower the temperature. The implication of the earlier work (Anderson
1961; Wolff 1961; Haldane 1978; Krishnamurthy et al. 1980) is that there are two
distinct possibilities in the w/t, U/t phase diagram:

XL = T>Utw (3.2)
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Strongly disordered magnetic systems 7

(I) Itinerant quasiparticle regime

The value of Txy, decreases monotonically from the high 7' limit (3.2) as T is
lowered. The states at the site 0 are absorbed into the itinerant quasiparticle
states of the surrounding sites, and the excitations at 0 are typical of those of
a Fermi liquid. As T — 0 we therefore expect the constant Pauli susceptibility
XL ~ (gup)?/Er where Ep ~ t is the Fermi energy. Therefore Ty, — 0 as
T — 0. This regime is clearly connected to the w = ¢ point where the site 0
ceases to be special.

(IT) Local moment regime
Now as T is lowered below T' ~ U, the value of Ty, rises and reaches a plateau
where

(QMB)2
Tyr = T T .
XL = T Kk<T<U (3.3)

(The lower limit is the Kondo temperature Tk and will be discussed below.)
The natural interpretation of this plateau is that two of the four possible states
at site 0 have been suppressed: the site 0 either has one spin up electron, or
one spin down electron, and it is extremely unlikely that it is in the state with
no electrons or with two electrons in a spin singlet state. When this happens,
we assert that a local moment has formed at site 0. Note that this strong local
correlation between the spin up and spin down occupations is not compatible with
an itinerant fermionic quasiparticle description, and really requires one to think
in terms of a fluctuating spin (a local moment) at site 0. As the temperature is
lowered further in this regime, the nontrivial physics of the Kondo effect becomes
active at temperatures of order Ty ~ texp(—cUt/w?) where c is a constant of
order unity. Notice that this temperature is exponentially small for large U, and
the temperature range in (3_3‘) is well defined. At temperatures below Tk the local
moment at 0 is quenched by the formation of a spin singlet with an electron drawn
from the conduction band. The local suscepbility therefore eventually returns to
that of the Pauli susceptibility of a Fermi liquid.

Notice that as T' — 0, there is no sharp distinction between cases (I) and (II)
above: in both cases the spin susceptibility is that of a Fermi liquid. Nevertheless,
there is a significant difference in the intermediate temperature behavior. In the
original mean field theory of Anderson (1961) this distinction between the two
cases appears as a sharp phase transition, but this is an artifact of the mean-field
approximation. We show in Fig 3 the phase diagram of the single impurity model
as determined by the generalization of the Anderson (1961) mean field theory.
Also sketched are the behaviors of T'x;, outlined above.

It is also useful to notice the analogy between the features noted above and
the fluctuations which lead to the quantum Griffiths singularities in random spin
systems (Fisher 1992, 1995; Thill & Huse 1995; Read et al. 1995; Guo et al. 1996;
Senthil & Sachdev 1996). In the latter cases the important random fluctuations
are in localized regions in which the quantum spin correlations have their values
enhanced by some finite fraction. As above, the contribution of any single such
region is eventually quenched by its quantum coupling to the surrounding spins.
The true importance of the local random fluctuations, and the qualitative differ-
ence they make to the macroscopic properties, only becomes apparent when the
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Figure 3. Mean field phase diagram of the single impurity Hubbard model sketched in Fig 53' The
solid line represents a smooth crossover which appears as a sharp transition in the mean-field
theory. The insets plot the values of T'xz in the two regimes. (From Milovanovic et al. (1989))

collective statistics of the global system is examined. We will turn to this in the
following subsection.

(b) Instabilities in the fully disordered model

Now we turn to the full complexity of H, allowing the configuration of every
site to be random. We anticipate that quantum Griffiths effects noted above could
have an important influence here, but before we can apply such arguments, more
elementary issues need to be settled:

(i) Do the single impurity instabilities discussed above apply to the fully random
case, in which every site is potentially an impurity site 7

(i7) What is the spatial extent of each local moment instability ? In particular, is
it correlated with the localization length of the itinerant quasiparticles ?

(ii7) Is it valid to treat the different instabilities independently of each other ?
Although the possibile importance of local moments to disordered metals had
been noted earlier (Quirt & Marko 1971; Ue & Maekawa 1971; Alloul & Dellouve
1987; Sachdev 1989), these questions were first addressed by Milovanovic et al.
(1989), and we review their results below.

First, notice that the distinction between the two regimes of the single impurity
model became apparent at a relatively high temperature T' ~ U. The same feature
is expected to hold in the fully disordered model, and we will therefore treat the
interactions in H within the Hartree-Fock approximation. It is essential, however,
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Strongly disordered magnetic systems 9

to include the effects of disorder exactly: this approach is therefore the converse
of the method used to describe the disordered itinerant quasiparticles (Altshuler
& Aronov 1983; Finkelstein 1983, 1984; Castellani & DiCastro 1985; Belitz &
Kirkpatrick 1994). A useful way to formulate the Hartree-Fock or ‘self-consistent
field’ approach is to consider it as the optimization of a single-particle effective
Hamiltonian Heg. We choose this in the form

H=—> tijch cia + Z(a‘ — p)clycia — Zﬁi - S; (3.4)

1<j,o

where €; and Ez are the variational parameters. Notice that the Ez are local mag-
netic fields which polarize the electrons on site ¢. The appearance of a significant
Ei on a given site is the signal of a formation of a local moment, and the spatial
form of the Ez field therefore contains the essential information that we want. As
we are mainly discussing the issue of the initial instability towards the formation
of local moments, it is useful to expand the effective free energy in powers of the
Ei. The results of such an expansion are

- 1 S -
Fett(hi) = Fo + 1 > X (656 — Uxjr)hi - hie + O(R*) (3.5)
igk

where Fy is the free energy of the unpolarized state with Ez = (0. The quantity
Xi; is the spin susceptibility matrix of this unpolarized state— it is the response
in the magnetization at site ¢ to a magnetic field at site j. More specifically, it is
defined by

X = YW )W) () A Z TR (3.
a,f B e}

where f(A) is the Fermi function, ¥, (7) are the wavefunctions of the itinerant
quasiparticles in the unpolarized state, and A, are their energies. In the present
effective field approximation these are the eigenvalues and eigenenergies of a one-
particle Hamiltonian

D@ = )iy = tig] Wa(h) = AaWali). (3.7)
J
Finally, the parameters €¢; are determined by the nonlinear self-consistency con-
dition
G=e+UY [Wal() f(Na)- (3.8)
(0%

The equations (8.7) and (3.8) were solved numerically for realistic realizations
of the disorder appropriate to Si¢ : P. The density of the disorder was chosen
so that the system is comfortably within the metallic phase. The quasiparticle
wavefunctions, W, are extended for a wide range of energies near the Fermi level,
and explicit evidence is presented for this below. From the known W, and A\,
the susceptibility matrix x;; was determined from (3.6).

To proceed further, is is useful to now diagonalize ;;. We solve the eigenvalue
problem

Xijma(j) = ﬁama(j) (3'9)
Phil. Trans. R. Soc. Lond. A (1996)
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where Kk, are the eigenvalues, and m, are the normalized eigenvectors. Now make
the expansion

= 3" Fumali) (3.10)

and insert it into (3.5). We get
1 9 )
fzfﬁiajma(l—wa)pﬁap) (3.11)

We see that there is first an instability to a non-zero value of p, if the asso-
ciated eigenvalue k, > 1/U. We identify the temperature at which this first
happens with the formation of a local moment with spatial distribution of spin
proportional to mg(7). What now happens at lower temperatures depends upon
the spatial structure of m,(3). If all of the instabilities appear in localized eigen-
vectors my (i) which are spatially well separated from each other, then they are
approximately decoupled, and we can identify the formation of each of those local
moments at the point where their respective k, > 1/U. On the other hand, if any
of the m,(i) are extended, then we have to go into the magnetized phase with
P = 0, recompute the new susceptibility matrix, and diagonalize it again. The
latter possibility in fact corresponds to the appearance of the long-range order of
the metallic spin glass phase, and will be discussed in Section 4. In the present
circumstances we found that all the m, were indeed well localized.

Evidence for the localization is presented in Fig &. There we compare the values
of the inverse participation ratios Py and P, which are defined by

P = <Z\%<z’>\4> P = <Z \ma<z'>\4> (3.12)

The eigenstates W, (i) and mq(7) are both normalized, and so Py, are measures
of their average spatial extent. If the states are locahzed then Py , will saturate to
some finite value of order unity as the system size is increased; on the other hand,
if the states are extended, we expect Py, to roughly decrease as 1/N where N is
the number of sites. We see from Fig 4 that the behavior of the two participation
ratios is dramatically different. The quasiparticle wavefunctions ¥, (i) are clearly
extended, as has been previously claimed. For the same samples, however, the
mq (i) are well localized, on the scale of just one or two sites (P, ~ 0.5).

The localization of the mg(i) is the key result of the numerical analysis of
Milovanovic et al. (1989). It answers the questions posed at the beginning of
this subsection. This localization justifies the identification of the instabilities in
the fully random H and Heg with essentially independent instabilities, much like
those in the single impurity model. The local moments are confined to just a
few sites, and this localization is quite independent of the localization length of
the quasiparticles, which are in fact itinerant. The initial instabilities at different
points in the sample are essentially decoupled as they correspond to different
localized eigenvectors of x;; with little mutual overlap. All of these features are
again consistent with their interpretation as Griffiths effects which require rare,
independent, fluctuations in different regions of the sample. All Griffiths effects
are precursors of some actual phase transition, the proper identification of which
requires some understanding of lower temperature properties of the local mo-
ments, which we address in the next section.
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Figure 4. Evidence for the localization of the magnetization eigenvectors in the metallic phase.
The inverse participation ratios of the eigenvectors of the susceptibility (Py) and the quasipar-
ticle Hamiltonian (Py) plotted as a function of system size. Notice that the magnetic modes are
well localized as P, is roughly independent of system size, while the quasiparticle excitations
are extended as Pp decreases rapidly with system size.(From Milovanovic et al. (1989))

(¢) Low temperature thermodynamics of local moments

Once the local moments have formed at temperatures 7" ~ U, a different ef-
fective Hamiltonian for the low temperature properties of the metal is clearly
warranted. On the local moment sites, states with two spin singlet electrons, or
with no electrons, occur only with a small probability, and it will clearly pay
to eliminate them by a canonical transformation. Let us denote that sites upon
which we want to perform this canonical transformation by £. Then on each such
site £ we have only two allowed states: a spin up electron or a spin down electron,
and a quantum spin-1/2 operator §g which transforms among them.

We have assumed above that the local moment resides on a single site. It is
clearly possible to have moments located on two or more sites, but we expect that
a similar procedure can be applied. A higher spin-j operator might be required,
and more states may have to be eliminated, but these complications are not
expected to modify any of the following discussion.

We can now write down an effective Hamiltonian for the entire random system

Hi = = Y tijclacia + U mipniy = /(6 = p)clycia
1<j, i ia
T Z/ Z JiuSe - C;ra&aﬂci,@- (3.13)
T

The primes on the sums indicate that the sites £ have to be excluded from the
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sum over i. The new feature is the Kondo exchange coupling, J;; (expected to be
antiferromagnetic) between the local moments and the itinerant electrons, and
this is the remnant of the canonical transformation eliminating the states on
the local moment sites. The low temperature properties of random models like
Hx have been considered by a number of investigators (Bhatt & Fisher 1992;
Dobrosavljevic et al. 1992; Dobrosavljevic & Kotliar 1993; Tusch & Logan 1993,
1995; Lakner et al. 1994; Langenfeld & Wolfle 1995; Rowan et al. 1995; Miranda
et al. 1996,1997)

We will focus here on the elegant results of Lakner et al. (1994) and Langen-
feld & Wolfle (1995) which have the virtue of containing quantitative predictions
specific to Si : P. They began with a quantitative computation of the boundary
between the single impurity local moment and itinerant quasiparticle regimes in
environments characteristic of those found in S7 : P. Assuming that the location
of the P sites in Si: P were statistically uncorrelated, they computed the prob-
ability distributions of the local environments of the sites. The combination of
these results allowed to predict two quantities essential for a quantitative com-
parison with experimental results (i) the density of local moments as a function
of P doping, and (i) the probability distribution of the Kondo temperatures
P(Tk) of these local moment sites. Over a broad range of Tk values, including
the entire experimentally relevant range, they found that

€0

P(Tk) = @ (3.14)

where ¢( is a normalization constant, and ax ~ 0.9. If one now ignores the pos-
sible exchange couplings between the local moments (these could be mediated by
the itinerant quasiparticles, or due to a direct exchange), the local moment contri-
bution to thermodynamic properties can be computed by a simple superposition
of the universal single impurity thermodynamics at different Kondo tempera-
tures. Such a procedure gives a specific heat C ~ T'~®% and a uniform spin
susceptibility x ~ T~“K. Lakner et al. (1994) find good quantitative agreement
between such model calculations and experimental measurements of the specific
heat.

The singular low temperature effects of the local moments above are clearly
associated with those sites at which Tk is anomalously small. The local spin ori-
entation on those sites has a long lifetime, and under these conditions any RKKY
coupling between them will clearly be important, although it has been neglected
in the above analyses. Indeed this RKKY coupling will prefer a fixed relative
orientation among the slowly fluctuating moments. As the RKKY coupling is an
oscillating function of separation, the relative orientation will oscillate in sign.
Taking the limit over which this RKKY coupling correlates an increasingly larger
number of local moments, we see that eventually spin glass order will appear.
None of this incipient ordering has directly involved the itinerant quasiparticles,
and so the system will remain metallic. These arguments clearly show that the
Griffiths effects associated with local moment formation are precursors of the
metallic spin glass phase.
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4. Metallic spin glasses

We now turn to an analysis of the metallic spin glass (MSG), with a particular
focus on its transition to the metallic phase (MQP) and the crossovers at finite
temperature in the vicinity of the quantum critical point. This analysis will be
done within the framework of a Landau theory for this transition that was de-
veloped recently (Read et al. 1995; Sachdev et al. 1995). Such analysis effectively
focuses only on the extended eigenmodes of the susceptibility x;; into which there
is condensation in the spin glass phase. The quantum Griffiths effects that were
crucial to understanding the low temperature properties of the MQP are entirely
missing at the mean field level. Omission of these Griffiths effects is probably quite
dangerous at low temperatures. However, we shall find new regimes at moderate
temperatures which display novel physics associated with the extended states of
the critical point, and the analysis below should be considered a first attempt
towards their understanding.

Portions of the discussion below are adapted from the recent review article by
Sachdev & Read (1996), and the reader is refered to it for greater detail. We
shall take a Landau theory point of view in this article, and hence automatically
obtain a formalism which is suited for analysis of fluctuations (Sachdev et al. 1995;
Sachdev & Read 1996). However it is also possibly to obtain results equivalent to
those of the Landau mean field theory by the exact solution of an infinite-range
model: such an approach was followed by Sengupta & Georges (1995) (and also
for related models by Huse & Miller (1993) and Ye et al. (1993)), but we shall
not use it here.

In the following subsections we will (7) introduce the order parameter for quan-
tum spin glass to paramagnet transition, (i) obtain a Landau functional for this
order parameter, (74) minimize the functional as a function of temperature and
coupling constant to obtain the predictions of crossover functions, and (iv) briefly
discuss the relationship to recent experiments on heavy fermion compounds.

(a) Order parameter

We begin by introducing the order parameter for the quantum phase transition
(Read et al. 1995). Recall that for classical spin glasses in the replica formalism,
this is a matrix ¢*®, a,b = 1...n are replica indices and n — 0. The off-diagonal

components of ¢° can be related to the Edwards-Anderson order parameter, qg 4,
in a somewhat subtle way we won’t go into here (Fischer & Hertz 1991; Binder &
Young 1986). In quantum (7" = 0) phase transitions, time dependent fluctuations
of the order parameter must be considered (in “imaginary” Matsubara time 7),
and in the spin glass case it is found that the standard decoupling, analogous to
the classical case introducing ¢, leads now to a matrix function of two times
(Bray & Moore 1980) which we can consider to be

Qab(valvTQ): Z Sz{l(Tl)Szb(Tz) (41)
1EN (z)

where N (z) is a coarse-graining region in the neighborhood of z, and we will
henceforth omit the vector spin indices on all operators except where necessary.
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From the set-up of the replica formalism it is clear that

(5i(0) - Si(r)) = lim — > Q" (z, 1 =0,72=1))) (4.2)
gpa = lim lim =3 ((Q®(x, 1 = 0,7 = 7)) (4.3)

T—o00on—0n
a

relating gg 4 to the replica diagonal components of (). We have introduced above
double angular brackets to represent averages taken with the translationally in-
variant replica action (recall that single angular brackets represent thermal /quantum
averages for a fixed realization of randomness, and overlines represent averages
over randomness). Notice that the fluctuating field @ is in general a function of
two separate times 7 and 7o; however the expectation value of its replica diag-
onal components can only be a function of the time difference 71 — 5. Further,
the expectation value of the replica off-diagonal components of @) is independent
of both 71 and 79 (Ye et al. 1993), and has a structure very similar to that of
the classical order parameter ¢®. One can therefore also obtain g4 from the
replica off-diagonal components of @, as noted above for ¢?°. Let us also note for
completeness that, unlike the quantum case, the replica diagonal components of
the classical order parameter ¢*® are usually constrained to be unity, and contain
no useful information.

The order parameter we shall use is Q“b(x, 71, T2), which is a matrix in a replica
space and depends on the spatial co-ordinate x and two times 7y, 7. However, a
little thought shows that this function contains too much information. The im-
portant degrees of freedom, for which one can hope to make general and universal
statements, are the long-time spin correlations with |7 — 72| > 7,,,, where 7, is
a microscopic time like an inverse of a typical exchange constant. As presented,
the function @) contains information not only on the interesting long-time cor-
relations, but also on the uninteresting time range with |73 — 72| smaller than
or of order 7,,. The correlations in the latter range are surely model-dependent
and cannot be part of any general Landau action. We shall separate out this
uninteresting part of @ by performing the shift

Qab(xv T1, 7_2) - Qab(xv 71, 7_2) - C(Sab(s(’rl - 7_2) (44)

where C' is a constant, and the delta function d(73 — 72) is a schematic for a
function which decays rapidly to zero on a scale 7,,. The value of C' will be
adjusted so that the resulting () contains only the interesting long time physics:
we will see later how this can be done in a relatively straightforward manner.
The alert reader may recognize some similarity between the above procedure,
and the analysis of Fisher (1978) of the Yang-Lee edge problem. In that case,
too, the order parameter contains an uninteresting non-critical piece which has
to be shifted away; we will see below that there many other similarities between
the Yang-Lee edge and quantum spin glass problems.

(b) Action functional

The action functional can be derived by explicit computations on microscopic
models or deduced directly from general arguments which have been discussed
in some detail by Read et al. (1995). Apart from a single non-local term present
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in the metallic case (Sachdev et al. (1995) (see below), the remaining important
terms are consistent with the general criteria that:

(i) The action is an integral over space of a local operator which can be ex-
panded in gradients of powers of () evaluated at the same position .

(ii) @ is bilocal (i.e. is a matrix) in time, and _each time is associated with one
of the two replica indices (see definition Eqn (4.1)). These “indices” can appear
more than once in a term and are summed over freely subject to the following
rules before summations:

(a) Each distinct replica index appears an even number of times.

(b) Repetition of a time “index” corresponds to quantum-mechanical inter-
action of spins, which must be local in time and accordingly can be expanded
as terms with times set equal plus the same with additional derivatives; it
occurs when the corresponding replica indices are the same, and only then.

We now present all the terms, which, a subsequent renormalization-group anal-
ysis tells us are important near the quantum critical point. This is only a small
subset of the terms allowed by the above criteria.

A crucial term is that linear in the order parameter (. This term encodes the
local, on-site physics of the spin glass model, and tells us the that spin is coupled
to a metallic bath of itinerant quasiparticles.

—/dd {/dT rQ‘m (z,7,7) /dTldTQZ Q*(z, 71772)} (4.5)

71 - 72

The coupling 7 will be seen below to be the critical tuning parameter for the
transition from the spin glass to the paramagnet. There is an overall factor of
1/kt in front of this term; we have written this factor as a product of two coupling
constants, k£ and t, for technical reasons we shall not discuss here.

There is a quadratic gradient term

1 2
Q—t/ddxdTldTg; [VQab(x,Tl,Tg)} (4.6)

which is responsible for the development of spatial correlations in the spin glass
order. A quadratic term without gradients

/ddxdTldng [QZI;(.'L',TLTQ)]2 (47)
a,b

is also allowed by the general criteria, but we choose to tune its coefficient to
zero by using the freedom in (4.4). As will become clear in the next subsection,
this criterion is identical to requiring the absence of uninteresting short time
behavior in (). Notice again the formal similarity to the theory of the Yang-
Lee edge (Fisher 1978), where setting the coefficient of a quadratic term to zero
was also responsible for removing the uninteresting non-critical part of the order
parameter variable.

Next we consider cubic non-linearities, and the most important among the
several allowed terms is the one with the maximum number of different time and
replica indices:

/d xdmdrodTs Z Q x 71,72)ch($772773)Qw(x773771)- (4.8)

a,b,c

Phil. Trans. R. Soc. Lond. A (1996)



16 S. Sachdev

This term accounts for non-linearities induced solely by disorder fluctuations.
Of the terms with fewer than the maximum allowed number of time indices at
a given order, the most important one is the one at quadratic order:

%/ddxdea:u Q*z, 1, 7)Q(x, T, T). (4.9)

The coupling u is the only one responsible for quantum mechanical interactions
between the spins, and as a consequence, all the time and replica indices in (4.9)
are the same.

Lastly we have a final quadratic term

~5p /dd /dTldTQZQ z,71,7)Q" (2, T2, T2), (4.10)

which accounts for the spatial fluctuation in the position of the paramagnet-
spin glass transition. Recall that the linear coupling 7 was the control parameter
for this transition, and a term like (4.10)) is obtained by allowing for Gaussian
fluctuations in 7, about its mean value, from point to point in space. It will turn
out that (#.10) plays no role in the mean-field analysis in the following subsection.
However, it is essential to include (#.10) for a proper theory of the fluctuations.

The final Landau theory of the metallic spin glass and its transition to the
metal is then (£3) + @6) + (£.7) + (£8) + (£9) + (£10).

= -

(¢) Mean field theory

We will now minimize the action of Section b'. We will review the mean field
theory for the MQP phase and identify the position of its instability to the MSG
phase. A discussion of the solution within the MSG phase will not be presented
here.

We Fourier transform from imaginary time to Matsubara frequencies by ex-
pressing the action in terms of

1/T .
Q“b(x,wl,wg) = / dTldTQQab(x,7‘1,7‘2)6_1(“}171—’—“}272), (4.11)
0

where we are using units in which A = kp = 1, and the frequencies, wi, wo are
quantized in integer multiples of 277T. Then, we make an ansatz for the mean-
field value of @@ which is x-independent, and dependent only on 7 — 79; within
the MQP phase this takes the form

Q" (z, w1, w2) = (66, 4un,0/T)x1 (iw1) (4.12)

where we have used (4, 3') to identify the right hand side as the local dynamic
susceptibility. Inserting (#.12) into the action for the metallic case in Section by,
we get for the free energy per unit volume F/n (as usual, F/n represents the
physical disorder averaged free energy):

F_T [M
n t

2
+5 TZXL(W)] (4.13)

(i) = 5 i)

w

Notice that the coupling 1/t appears only as a prefactor in front of the total free
energy, as the contribution of the 1/¢? term (4.10) vanishes in the replica limit
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n — 0. The value of ¢ will therefore play no role in the mean field theory. We
now determine the saddle point of (4.13) with respect to variations in the whole
function xr(iw), and find the solution

(i) = —%,/M A (4.14)

where the energy scale A is determined by the solution of the equation

A=F—ul) \/lw+A. (4.15)

Taking the imaginary part of the analytic continuation of (4.14) to real frequen-
cies, we get
w

f”vf A+ VT T AZ

Inserting the solution for x; back into (#.13), and using (4.15), we get for the
free energy density:

= S + 82 ¢ <TZ \/m>

The equations (4.15), (#.16), (#.17) are key results (Sachdev et al. 1995; Sengupta
& Georges 1995), from which our mean field predictions for physical observables
will follow. Despite their apparent simplicity, these results contain a great deal of
structure, and a fairly careful and non-trivial analysis is required to extract the
universal information contained within them.

First, it is easy to note that there is no sensible solution (with A > 0) of (4.15)

at T'= 0 for ¥ < 7, where
_ dw 2032
7, :u/%\/\w\ ~ 2 (4.18)

where A, is an upper cut-off in frequency. Clearly the system is in the MSG phase
for T'= 0, 7 < 7., and a separate ansatz for () is necessary there, as discussed
elsewhere (Sachdev et al. 1995). Let us now define

r=T—T7, (4.19)

so that the quantum critical point is at 7' = 0, » = 0. In the vicinity of this point,
our action constitutes a continuum quantum field theory (CQFT) describing the
physics of the system at all energy scales significantly smaller than A,. The
“universal” properties of the system are the correlators of this CQFT, and they
apply therefore for r,T < A, a condition we assume in our analysis below. It

Xz (w) = (4.16)

F 1

— 417
n K2t ( )

is also natural to assume that the microscopic coupling u ~ Ay 2 We shall,
however, make no assumptions on the relative magnitudes of r and 7.

The general solution of (4.15) under the conditions noted above was described
by Sachdev & Read (1996); we only present the final result for A, which is in the

form of a solvable quadratic equation for v/A:

1/2
A+uTVA =r <1 _ vy ) +uT?2P (%) , (4.20)

s
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where the universal crossover function ®(y) is given by

1 [ S s+y T+ y]
d(y) = — 1 — ] — 1 . 4.21
) =5 [ vods o (57) = (14 52 ) + (121)
with ¢ the digamma function. The following limiting results, which follow from

(4.21), are useful for our subsequent analysis:

V1/27 @) —0
P(y) = { (2/3m)y?/2 +Z/1%2 S_(?(),]/TQ/%L—l(/%)_i_ O(y~3/2) yy_) . (4.22)

The expression (4.16), combined with the results ({.20) and (4.21) completely
specify the r and T dependence of the dynamic susceptibility in the MQP phase,
and allow us to obtain the phase diagram shown in Fig &. The crossovers shown
are properties of the CQFT characterizing the quantum critical point. We present
below explicit results for the crossover functions of a number of observables within
the mean field theory.

Before describing the crossovers, we note that the full line in Fig. & denotes
the boundary of the paramagnetic phase at r = r.(T") (or T' = T,(r)). This is the
only line of thermodynamic phase transitions, and its location is determined by
the condition A = 0, which gives us

re(T) = —u®(0)T%? or Tu(r) = (—r/u®(0))*/? (4.23)

The different regimes in Fig § can be divided into two classes determined by
whether T'is “low” or “high”. There are two low T  regimes, one for r» > 0, and the
other for r < 0; these regions display properties of the non-critical ground states,
which were reviewed in Section 8. More novel is the high 7' region, where the most
important energy scale is set by T, and “non-Fermi liquid” effects associated with
the critical ground state occur. We now describes the regimes in more detail, in
turn.

(I) Low T region above MQP ground state, T' < (r/u)?/3
This is the mean-field “Fermi liquid” region, where the leading contribution to
A is its T = 0 value A(T) ~ A(0) = r. The leading temperature dependent
correction to A is however different in two subregions. In the lowest T" region Ia,
T < r, we have the Fermi liquid 7?2 power law

uT 2
A(T) = A(0) = 6\/T;

At higher temperatures, in region Ib, r < T < (r/u)
temperature dependence

A(T) — A(0) = ud(0)T>/? region Ib and II. (4.25)

It is also interesting to consider the properties of region I as a function of obser-
vation frequency, w, as sketched in Fig. 6. At large frequencies, w > r, the local
dynamic susceptibility behaves like x7/ ~ sgn(w),/|w], which is the spectrum of
critical fluctuations; at the T' = 0, r = 0 critical point, this spectrum is present
at all frequencies. At low frequencies, w < r, there is a crossover (Fig ) to the
characteristic Fermi liquid spectrum of local spin fluctuations x} ~ w/+/r.

The present mean-field theory of course does not contain Griffiths effects com-
ing from rare local fluctuations. These were discussed in Section 8, and as noted

region Ia. (4.24)

2/ 3 we have an anomalous
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A LOCAL MOMENT
FORMATION

RN Mean-field -7

>~ . | nhon-Fermi liquid 7

N e

N / I

LI b
\ / -

SPIN GLASS
ORDER

MSG

\ /| Quantum Griffiths
/| non-Fermi liquid

- - Ia
MQP '3
r

Figure 5. Phase diagram of a metallic spin glass as a function of the ground state tuning
parameter r and temperature 7. The mean-field theory of local moment formation discussed
in Section 3(b) applies at temperatures T greater than U for all values of r. In the notation
of Fig i, the T = 0 state is a MSG for r < 0 and a MQP for r > 0. The full line is the only
thermodynamic phase transition, and is at r = r.(T) or T' = T.(r). The quantum critical point
isat r =0, T = 0, and is described by a continuum quantum field theory (CQFT). The dashed
lines denote crossovers between different finite 7' regions of the CQFT: the low T regions are
Ia,Ib (on the paramagnetic side) and III (on the ordered side), while the high T region (II)
displays “mean-field non-Fermi liquid” behavior. The quantum Griffiths precursors of the MSG
phase occur in region I, and now rare regions lead to certain “quantum Griffiths non-Fermi
liquid” characteristics in the thermodynamics. The crossovers on either side of II, and the spin
glass phase boundary T.(r), all scale as T' ~ |r|**/(1784). the boundary between Ia and Ib obeys
T ~ r*”. The mean field values of these exponents are z =4, v = 1/4, and 6, = 2. The shaded
region has classical critical fluctuations described by theories of the type discussed by Fischer
& Hertz (1991)

there, and are crucial in understanding the low 1" properties of the MQP phase.
The present mean-field theory captures the behavior of a “typical” region of the
sample, but it is the rare regions that dominate the thermodynamics and lead to
certain “quantum Griffiths non-Fermi liquid” characteristics.
(I) High T region, T > (|r|/u)?/?

This is the “mean-field non-Fermi liquid” region; unlike region (I), the non-Fermi
liquid effects are now properties of the mean-field theory, and not consequences of
rare fluctuations. Here temperature dependent contributions to A dominate over
those due to the deviation of the coupling r from its critical point, » = 0. There-
fore thermal effects are dominant, and the system behaves as if its microscopic
couplings are at those of the critical ground state. The T' dependence in (4.25)
continues to hold, as we have already noted, with the leading contribution now
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LOW T REGION OF CQFT

Fermi liquid ‘ Critical
0 TZV
w
HIGH T REGION OF CQFT
‘ Quantum relaxational ‘ Critical
0 uzyTl—f—HuV
w

Figure 6. Crossovers as a function of frequency, w, in the regions of Fig f_; The low T region
is on the paramagnetic side (r > 0). The quantum Griffiths effects, occur in the “Fermi liquid”
region, making it the “quantum Griffiths non-Fermi liquid” of Fig 6.

being A ~ u<I>(0)T3/2. As in (I), it is useful to consider properties of this region
as a function of w (Fig 6). For large w (w > uT3/?) we again have the critical
behavior x/ ~ sgn(w)y/|wl; this critical behavior is present at large enough w in
all the regions of the phase diagram. At small w (w < uT®/2), thermal fluctu-
ations quench the critical fluctuations, and we have relaxational behavior with
X/I/, ~ w/u1/2T3/4.

(IIT) Low T region above MSG ground state, T' < (—r/u)%/?

Effects due to the formation of a static moment are now paramount. As one ap-
proaches the spin glass boundary (4.23) from above, the system enters a region

of purely classical thermal fluctuations, |T — T.(r)| < u?/3T; / 3(r) (shown shaded

in Fig §) where
2
A= (%ﬁ) (4.26)

Notice that A depends on the square of the distance from the finite T" classical
phase transition line, in contrast to its linear dependence, along 7' = 0, on the
deviation from the quantum critical point at r = 0.

We have now completed a presentation of the mean field predictions for the
finite T crossovers near the quantum critical point (Fig B), and for the ex-
plicit crossover functions for the frequency-dependent local dynamic suscepti-
bility (Fig 6 and Eqns (4.16), (#.20), (4.21)). We also summarize here results for
a number of other experimental observables, whose T" and r dependences follow
from those of A described above.

Nuclear relazation rate 1/T: (Sengupta & Georges 1995)

1 ) X// (w) A2
— = A? lim 2 — , 4.27
T w—0 W 26V A ( )
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where A is determined by the hyperfine coupling.
Uniform linear susceptibility, x.:

Xu = Xb — %\/Z, (4.28)

where x; is the T, r- independent background contribution of the fermions that
have been integrated out, ¢ is a coupling constant.
Nonlinear susceptibility xn1-
u92 1

Xnl = TN
Notice that x,; is proportional to the quantum mechanical interaction u, and
would vanish in a theory with terms associated only with disorder fluctuations.
Free energy and specific heat:
The result for the free energy was given in (4.17), and it needs to be evaluated
along the lines of the analysis carried out above for the crossover function deter-
mining A. Such a calculation gives

(4.29)

F(T,r)— F(T =0,r =0) 1 [2rAd? s (AY | ALA?
— | T2 (2
n K2t | 3w * d (T) + 2
(A —7)2 4752
_ 4.
+ 2u 157 |’ ( 30)

where

Dp(y) = 22 [T _d0 9yt VO y) (4.31)

_ o
3m Jo e 1 /y + /22

This result for F includes non-singular contributions, smooth in r, which form a

background to the singular critical contributions. In region II, the most singular

term is the one proportional to ® £, and yields a specific heat, C, (Sengupta &
Georges 1995):

Cy ¢(5/2)

= \/ﬂm%ﬁ (4.32)
where 73 is a background contribution.
Charge transport:
The consequences of the order parameter fluctuations on charge transport were
explored by Sengupta and Georges (1995). The quasiparticles are assumed to
carry both charge and spin, and they scatter off the spin fluctuations via an
exchange coupling. In the Born approximation, this leads to a contribution to
the quasi particle relaxation rate, 1/7,

1 x / de L (4.33)
0

Tap sinh(Q2/T) NN /7Q2+A2’

whose T' and r dependence follows from that of A. In region II, 1/7,, ~ T%/2.

(d) Application to experiments

There has been much recent experimental activity on the transport, thermo-
dynamic and neutron scattering properties of a number of rare-earth intermetal-
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lic compounds which diplay low 7" “non-Fermi liquid” behavior. A majority of
these systems are not too far from a magnetically ordered phase of some type:
spin-glass ordering has been observed in Y;_,U,Pds (Gajewski et al. 1996),
Laj_,Ce,Cug 2Sis (Steglich et al. 1996), and URhyGey (Sullow et al. 1997). How-
ever, it is fair to say that a direct relationship between the properties of these
materials and the complicated theoretically predicted set of crossovers in Fig 5
has not yet been clearly established. The material La;_,Ce,Cus 2Sis has been
studied in region II of Fig & (Steglich et al. 1996) and it appears that initial
results for the resistivity and the specific heat agree well with the mean-field
theoretical predictions reviewed in Section 4(c).

5. Conclusions

In a recent conference on “non Fermi liquid behavior in metals” (Coleman
et al. 1996), two routes to non-Fermi liquid behavior were discussed: those due
to so-called Kondo disorder models, and those due to proximity to a magnetic
quantum phase transition. These were viewed as competing mechanisms which
possibly applied to different rare-earth intermetallic compounds. One of the pur-
poses of this article has been to argue that these mechanisms are really better
viewed as different limiting regimes of the same underlying physics, and that no
material is strictly in one or the other regime. Our basic point is made clear by
a glance at Fig 5. The Kondo disorder models apply at low T' above the MQP
ground state: here rare local moments with anomalously low Kondo temperatures
appear to dominate and lead to non-Fermi liquid effects. We have argued here
that these effects are best viewed as quantum Griffiths singularities associated
with the transition to the MSG phase (or in more regular systems, as a transi-
tion to some ordered metallic antiferromagnet), and they are denoted in Fig 5
as “quantum Griffiths non-Fermi liquid”. The other region of non-Fermi liquid
behavior appears in region II, describable as the high T" region of the CQFT as-
sociated with the MQP-MSG quantum critical point. Now the non-Fermi liquid
behavior is associated with the behavior of the typical local moment, and is ac-
cessible in mean-field theory; this is denoted in Fig b as “mean-field non-Fermi
liquid”. Clearly the fluctuation terms which disrupted the mean-field predictions
in region I are also going to be significant here, but there is no clear under-
standing of their structure. A unified theoretical description which includes such
corrections and the crossover to the quantum Griffiths singularities in region I is
lacking, and should be an important focus of future theoretical work.

Finally, a few speculative remarks on the metal-insulator transition, which has
been the focus of so much theoretical attention in the last decade. One of the
stumbing block in the analysis of the transition from the metal (MQP) to the
insulator (IQP) has been the apparent run-away flow of the “triplet interaction
amplitude” to infinity (Belitz & Kirkpatrick 1994). We believe this runaway flow
is the signal within the weak-disorder perturbation theory of the local moment
instability reviewed here. We have also argued that this instability is really a pre-
cursor of the MQP-MSG transition, and is therefore incidental to the MQP-IQP
transition (it should also be noted that Belitz & Kirkpatrick (1996) have argued
that the runaway flow is related to a ferromagnetic phase). The correct theory of
the latter transition should “factor out” these local moments in some way. How
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this may be consistently done, is not understood. Clearly questions related to the
interplay and separation of critical and quantum Griffiths singularities discussed
above, arise here too.
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