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1. Introduction

The recent successful observations of Bose condensation in neutral, trapped
atomic gases [1] and excitons in Cu2O [2] have taken the experiments into a hereto-
fore inaccessible regime, as pointed out by several speakers at this conference. These
also have led theorists to ask and study questions regarding the Bose gas which, with-
out these recent success stories, would have been merely academic excercises. One
such exciting field is to understand the time-dependent nonequlibrium phenomena
in the Bose gas. In this paper, we study theoretically one particular non-equilibrium
question which we hope would be possible to investigate experimentally in the near
future. The question is the following: Following a rapid quench of the Bose gas from
a high temperature disordered state to a low temperature ordered state, how does
the condensate density grow from its initial value zero to its equilibrium value corre-
sponding to the final temperature? A few recent papers [3,4] addressing this question
have focused on the early-time (of the order of a few collision times) nonuniversal
dynamics. However, as also noted in Ref. [5], the interesting experimental questions
are instead associated with the late time dynamics that involves the coarsening of the
Bose condensate order parameter field. Our analytical and numerical studies of this
late time dynamics of the Bose gas shows, in addition to answering the question on
the growth of condensate density, that this dynamics represents a new universality
class of phase ordering kinetics.

Before elaborating on the nonequilibrium question, it would be useful to reca-
pitulate briefly the equilibrium behaviour of the Bose gas. A dilute Bose gas (with
repulsive interactions) at equilibrium undergoes a phase transitions from a high tem-
perature “normal” state to a low temperature “superfluid” state at a nonzero critical
temperature Tc in space dimensions d > 2. This low temperature superfluid state
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has true long range order, i.e., the correlation function of the complex Bose order pa-
rameter field ψ(r) approaches a nonzero constant, 〈ψ∗(0)ψ(r)〉 → |〈ψ〉|2 as r → ∞.
On the other hand, in d = 2, the Bose gas undergoes a Kosterlitz-Thouless tran-
sition at T = TKT . For T < TKT , the system has quasi long range order, i.e.,
the correlation function decays to zero as r → ∞ but in a slow power law fashion,
〈ψ∗(0)ψ(r)〉 ∼ r−η(T ) where the exponent η(T ) depends continuously on tempera-
ture ranging from η(0) = 0 to η(TKT ) = 1/4. Associated with this phase transi-
tion what also happens in the low temperature ordered phase is Bose condensation,
namely, the average number of particles in the k = 0 mode becomes macroscopic,
i.e., 〈n(k = 0)〉 = 〈|ψ(k = 0)|2〉 ∼ Ld for d > 2 and ∼ L2−η(T ) for d = 2. It has been
argued [6] that the statics of the Bose gas is in the same universality class as that of
the classical XY model of ferromagnets.

We now come to the non-equilibrium question. Suppose that we prepare our
Bose gas at equilibrium at a very high initial temperature Ti where the condensate
density is zero and then rapidy quench the system to a temperature Tf below the
transition temperature. We start the clock immediately after the quench and monitor
the condensate density ρ0(t) = 〈n(k = 0, t)〉/Ld′ (where d′ = d for d > 2 and
d′ = 2 − η(T ) for d = 2) as a function of time. As time progresses, this density is
expected to rise from its initial value 0 and then eventually saturate to its equilibrium
value (a nonzero number of ∼ O(1)). We would like to know the precise form of this
temporal evolution. We show below that this time evolution of the condensate density
can be described in a natural and precise language by using the phenomenology of
phase ordering kinetics developed recently for dissipative classical spin systems, as
reviewed by Bray [7]. As a byproduct of this study, we find that while the statics
of the Bose gas and classical XY model are in the same universality class, the non-
equilibrium dynamics of these two systems belong to different universality classes.

In Section-2, we briefly review the scaling hypotheses of the phase ordering
theory and discuss the scaling predictions drawn from this general theory for the
Bose gas. In Section-3, we introduce a solvable toy model of coarsening of Bose gas
in d = 2 and present its exact solutions to illustrate the importance of nondissipative
Poisson bracket terms in the equations of motion. Section-4 contains a discussion
on the Gross-Pitaevski (GP) equation that describes the evolution of the Bose gas
in a “microcanonical” ensemble. Section-5 contains the numerical results on the GP
equation in d = 2 and 3 that verifies the scaling predictions of Section-2. Finally, we
summarize and conclude in Section-6. A shorter version of this work has appeared
elsewhere [8].

2. Scaling Predictions From Phase Ordering Theory

In the theory of phase ordering kinetics [7], one considers the evolution of a clas-
sical spin system (such as Ising model) after a rapid quench from a high temperature
disordered phase to a low temperature ordered phase. The dynamics is assumed to
be overdamped and purely relaxational in which each spin simply moves along the
steepest downhill direction in the instanteneous energy landscape. Locally ordered
regions will appear immediately after the quench, but the orientation of the spins
in each region will be different. The coarsening process is then one of allignment
of neighbouring regions, usually controlled by the motion and annihilation of topo-



logical defects (domain walls for Ising spins, vortices for XY spins, etc.). As time
progresses, these domains grow in size as the system tries to achieve local ordering
on larger and larger scales. A key step in the theory is the introduction of a single
length scale l(t), a monotonically increasing function of the time t, which is about
the size of a typical ordered domain at time t. At late times when l(t) is larger
than the microscopic length scales such as the range of interactions or the lattice
spacing, it is believed that the late stage morphology of the system is completely
characterized by l(t), and is independent of microscopic details or initial conditions
(as long as the initial condition is short ranged), i.e., it is universal. At late times,
l(t) typically grows like a power law, l(t) ∼ t1/z where the exponent z depends upon
the various conservation laws satisfied by the dynamics. For nonconserved Ising or
XY spin dynamics, it is well established that z = 2 [7].

The morphology of growing domains is characterized by various time dependent
correlation functions which exhibit universal scaling behaviour. For the purpose of
comparision with the Bose gas, let us illustrate these scaling predictions for the 2
component classical XY model. Let ψ(r, t) denote the order parameter field for the
XY model. Then in an infinite system, the scaling hypothesis of phase ordering
kinetics predicts a scaling form for the equal time correlation function, G(r, t) =
〈ψ(0, t)ψ(r, t)〉 ∼ r−ηg[rt−1/z ] where η = 0 for d > 2 and in d = 2, η = η(T ), the
usual temperature dependent exponent associated with the final equilibrium state.
This means that the structure factor, the Fourier transform of G(r, t), will scale as
S(k, t) ∼ t(d−η)/zg̃(kt1/z). In particular, the k = 0 mode will grow as S(0, t) ∼
t(d−η)/z in an infinite system.

However, in a finite system of linear size L, the system will stop coarsening
and attain the equilibrium ordered state when l(t) ∼ L. In that case, these scaling
behaviour of the inifinite system would be modified by finite size scaling (FSS). For
example, it would then predict a FSS form for the equal time correlation function,
G(r, t) ∼ L−ηΦG[r/L, t/Lz ] and hence S(0, t) ∼ Ld−ηΦ[t/Lz]. This last scaling
function Φ goes to a constant for t >> Lz and the system attains equilibrium after
t ∼ Lz. The value of z is known to be 2 for the classical XY model [7] apart from
the logarithmic corrections in d = 2 [15,16].

Now consider the Bose gas. The order parameter in this case is the boson
annihilatin field ψ(r, t) which is complex; the phase of the expectation value of ψ is
aligned across the system in the equilibrium Bose-condensed state. A key point is
that after relatively few atomic collisions, once the domain size l(t) is large enough
(e.g., larger than the de Broglie wavelength), it is permissible [4] to treat ψ(r, t)
as a classical field which obeys Hamilton-Jacobi equations of motion ( for a related
discussion on the emergence of classical dynamics in the equilibrium properties of an
antiferromagnet, see Ref. [9]). It must be kept in mind that it is only the equations
of motion for the collective order parameter which are classical-the very existence of
the complex order parameter is due entirely to quantum mechanics, and the fact that
there is a wavefunction for the condensate..

If we believe that the late time ordering dynamics of the Bose field can be
described by the scaling phenomenology of the phase ordering theory described above
(even though the equation of motion for the Bose field is different from that of the
classical spins), then one obtains the prediction that the k = 0 mode of the structure
function, which in the Bose gas case is just the number of particles in the k = 0



mode, will scale as S(0, t) ∼ Ld−ηΦ[t/Lz]. Then once we know the exponent z and
the scaling function Φ, it will give us the temporal evolution of the condensate density,
the question we started out with.

Of course the value of the exponent z and the scaling function Φ may be differ-
ent from the classical XY case as they depend on the conservation laws satisfied by
the equations of motion of the order parameter. Indeed one of the central results of
this paper is to establish that while this scaling prediction holds for the Bose gas,
the exponent z in the Bose gas (evolving via the GP equation as discussed later) is
different from that of the XY model. This is due to the important property of the
equations of motion for ψ, discussed in Section-4, that they are not simply relax-
ational. Instead, they contain nondissipative, kinematical “streaming” or “Poisson
bracket” terms [10]. One such term is responsible for the Josephson precession of the
phase of ψ at a rate determined by the local chemical potential. One of our main
objectives is to understand the consequences of such terms on the phase ordering the-
ories. We will argue that the Josephson term constitutes a relevant perturbation on
the dynamics and that the resulting coarsening process belongs to a new universality
class.

In Section-5, we give numerical evidence supporting the scaling of S(0, t) as
predicted above and also determine the exponent z numerically. But before doing
that, in the next Section, we consider a solvable toy model of coarsening which
will prove that indeed the “streaming terms” in the equation of motion are relevant
perturbations. This will prepare us to expect that the value of z in the Bose gas
dynamics might be different from the classical z = 2 of the XY model and also give
us important physical insights as to why they are different.

3. A Solvable Toy Model of Coarsening

In this Section we consider a simple toy model of coarsening that illustrates
the possible consequences of the Josephson term in a simple setting. Consider the
Bose gas in d = 2. As mentioned earlier, for T < TKT , the Bose gas is superfluid.
Now consider the phase ordering process in which the Bose gas is rapidly moved at
time t = 0 from contact with a reservoir at an initial T = Ti, to a reservoir with
a final T = Tf , such that Tf < Ti < TKT . A similar quench was considered in
Ref. [12] for the purely dissipative XY model. As time progresses, the system will
approach the equilibrium configurations corresponding to T = Tf starting from the
initial configurations corresponding to Ti; this ordering will proceed simply via the
spin wave dynamics. This is in contrast to the ordering via annihilation of vortex-
antivortex pairs as in the case of quench from a temperature above TKT . Since there
are no vortices in the initial configurations, they won’t be generated because the
system will only reduce its energy.

Indeed in the long time limit, all vortices and fluctuations in the amplitude of ψ
can be neglected, and we may parametrize ψ = exp(iφ). The free energy density in
the purely dissipative XY model is now determined simply by the gradients of the
phase ∼ (∇φ)2. In the case of the Bose gas, it is also necessary to take the conserved
number density into account. Let m be proportional to the deviation of the particle



density from its mean value; then the free energy density we shall work with is

F =
1
2

∫
d2r[(∇φ)2 +m2]. (1)

We have rescaled spatial coordinates and m to obtain convenient coefficients in
F . Note that the fields m and φ are not independent but are related via the Poisson
bracket

{m(r), φ(r′)} = g0δ(r − r′), (2)

where g0 is a constant. The origin of the Josephson precession term, whose effects
on dynamics we wish to study, lies in this Poisson bracket. The method reviewed in
Ref. [10] now leads to the linear equations of motion [6]

∂φ

∂t
= Γ0∇2φ+ g0m+ θ,

∂m

∂t
= λ0∇2m+ g0∇2φ+ ζ, (3)

where the coefficients Γ0, λ0 > 0 represent the dissipation arising from coupling of
the system to the reservoir. The effects of the reservoir are also contained in the
Gaussian thermal noise sources θ and ζ with zero mean and (for t > 0) correlations
appropriate to T = Tf : 〈θ(r, t)θ(r′ , t′)〉 = 2Γ0Tfδ(r − r′)δ(t − t′), 〈ζ(r, t)ζ(r′ , t′)〉 =
−2λ0Tf∇2δ(r − r′)δ(t − t′), and 〈ζ(r, t)θ(r′ , t′)〉 = 0 (kB = 1). Equations (3) are
linear, can be easily integrated and all correlations can be computed exactly.

Let us first recall the structure of the solutions expected from naive scaling
[7] for d = 2. One expects a single length scale growing as l(t) ∼ t1/z. Also the
morphology of the evolving patterns are characterized by two types of correlation
functions: (i)The equal time correlator G(r, t) = 〈ψ∗(r, t)ψ(0, t)〉 is expected to scale
as G(r, t) ∼ r−ηf g(r/t1/z) where g is a universal scaling function and ηf is the
equilibrium exponent of the quasi long range order at T = Tf as mentioned in
Section-2. (ii)The unequal-time correlation function C(r, t) = 〈ψ∗(r, t)ψ(0, 0)〉 for
which we expect for large r and t, C(r, t) ∼ t−λ/zf(r/t1/z ) where f is a universal
scaling function, and λ is the autocorrelation exponent.

It turns out that our model F does not completely obey the simple scaling
hypotheses as stated above. This becomes clear upon considering the two-time cor-
relator C whose explicit exact solution turns out to depend upon two time-dependent
length scales l1(t) ∼ (at)1/2 and l2(t) ∼ g0t (with a = (Γ0 +λ0)/2). It actually obeys
the scaling form C(r, t) ∼ t−(3ηi+ηf )/4f̃ [r/(at)1/2, r/(g0t)] (where ηi = Ti/2π). The
dependence of these scales on g0 suggests that g0 is a relevant perturbation with
renormalization group eigenvalue 1, in the language of Ref. [7]. The scaling function
f̃ is found to be

f̃(x1, x2) = exp
[
−ηi

∫ ∞
0

dy

y
{1− J0(y)} cos(y/x2)e−y

2/x1
2]
. (4)

For r ∼ l1(t), using f̃(x1, x2 → 0) = 1, we find that the autocorrelation C(0, t) ∼
t−(3ηi+ηf)/4 in contrast to the result in the model of Ref. [12] C(0, t) ∼ t−(ηi+ηf )/4.
On the contrary, one could insist on a scaling picture using only the single larger
length scale r ∼ l2(t), and would then need f̃(x1 → ∞, x2) which equals [1 +√

1− x2
2]−ηi for x2 < 1 and equals x2

−ηi for x2 >> 1. It can also be checked



that one recovers the initial equal time equilibrium result for C(r, t) when r → ∞
with t large but fixed. We also note that the relevance of g0 is evident in the auto-
correlations of m. We find 〈m(0, t)m(0, 0)〉 ∼ 1

t f1(g0

√
t/a) where

f1(τ ) = 4π2ηi
[
1−

∫ ∞
0

sin ye−y
2/2τ2

dy
]
; (5)

clearly, for g0 = 0, this autocorrelator decays as 1/t for large t, while for nonzero
g0 it decays faster as t−2. Finally, results on the equal-time ψ correlator G are as
follows. It has a crossover time t1 ∼ ã/g0

2 with ã = |Γ0 − λ0|; this time is similar to
the crossover time in 〈m(0, t)m(0, 0)〉, except that ã has replaced a. Both for t << t1
and for t >> t1, G obeys a scaling form similar to that obtained in Ref. [12] (which
has g0 = 0): G(r, t) ∼ r−ηf g(r/(γt)1/2) where g is the scaling function described in
[12]; however, the rate γ = Γ0 for t << t1 and γ = a for t >> t1.

While this phase only model F is not relevant for studying quenches from above
the transition temperature (since it neglects the nonlinear terms and hence the vor-
tices which are the elementary defects for the quench from high temperatures), the
exact solution of this linear model is quite instructive. It clearly emphasizes the im-
portance of the nondissipative Josephson coupling term. In fact as seen above, the
presence of this term (g0 6= 0) changes the universality class of the dynamics. Thus it
is reasonable to expect that even for quenches from above the transition temperature,
this term would play an important role. In fact this is what we demonstrate in the
next section by studying the full nonlinear equation that describes the time evolution
of the order parameter.

4. Coarsening of Bose Gas: A Deterministic Microcanonical Approach

Consider the quench of the Bose gas from above the transition temperature. In
this case, the initial configuration, being a typical high temperature configuration,
contains several different types of topological defects (excitations). As the system
dissipates energy with time, most of these defects will disappear after a short transient
time leaving behind only the elementary excitations. In d = 2, these elementary
excitations are point vortices and in d = 3 they are vortex lines. As time progresses,
these elementary defects move around and annihilate each other upon meeting (and
thereby release energy) and the system becomes more and more ordered. To study
this coarsening process that proceeds via the annealing of defects it is necessary to
study the evolution of both the phase and amplitude of ψ.

This growth of long range order in the system can be studied in two ways. In
one case one considers the deterministic time evolution of an isolated Bose gas, not
in contact with a heat bath. What we find in our study is that though the dynamics
in this case is nondissipative, the system still exhibits an irreversible approach to the
equilibrium. In the other case, the Bose gas is in contact with a heat bath and its
evolution equations are therefore necessarily stochastic. These are the analogues of
microcanonical and canonical ensembles in equilibrium statistical mechanics. Most
previous studies on coarsening have been done in the stochastic “canonical” ensemble.
While it may be reasonable to expect that both descriptions may lead to same results
for the universal scaling properties, a word of caution, however, is warranted since this



equivalence is well established only for equal time properties of equilibrium systems.
Equilibrium and nonequilibrium dynamics may be more subtle; indeed, in a recent
study [11] of unequal time dynamics of the quantum Ising chain in a transverse field
it was found that the underlying deterministic quantum dynamics did not map onto
any known classical stochastic model.

In this paper, we use only the determininstic “microcanonical” approach and do
not make any statement about the “canonical” results. To the best of our knowledge,
this deterministic “microcanonical” approach has never been used before to study
coarsening in any system. The use of this approach is not just cosmetic, in fact it has
some advantages over the “canonical” approach, atleast for the Bose gas. As we will
see below, the dynamics in the “microcanonical” approach is completely specified by
the Hamiltonian of the system with no additional phenomenological parameters. The
“canonical” dynamics, on the other hand, needs several phenomenological constants
as input parameters. Therefore, the “microcanonical” dynamics is much easier to
implement numerically and one does not need to do a “time consuming” search in a
rather big parameter space as in the “canonical” case.

For the isolated Bose gas (“microcanonical” ensemble), an excellent approx-
imation for the total energy of an order parameter configuration ψ(r, t) is H =∫
ddr[|∇ψ|2 + u

2
|ψ|4], where the length scales have been rescaled to make the co-

efficient of the gradient term unity, and u > 0 is the two-particle T matrix at low
momentum, representing the strength of the repulsive onsite interaction. The stan-
dard Hamilton-Jacobi equation of motion for ψ follows using the Poisson bracket
{ψ,ψ∗} = i

i
∂ψ

∂t
= [−∇2 + u|ψ|2]ψ, (6)

and is well known [13] Gross-Pitaevski (GP) or nonlinear Schrodinger equation. We
can also add a quadratic |ψ|2 term to H, and it leads to a term linear in ψ in the GP
equation; however this linear term can be eliminated by an innocuous global phase
change in ψ. The GP equation conserves the total number of particles

∫
ddr|ψ|2,

the total momentum, and H, and hence there is no global dissipation of energy.
Nevertheless, in the thermodynamic limit, the GP equation does display irreversible
coarsening, as will be be abundantly clear from our numerical results to be described
in the next Section. A random initial state with a negiligible number of particles in
the zero momentum (k) state (i.e., short range initial correlations), evolves eventually
to a state with a condensate fraction equal to that expected at equilibrium in the
microcanonical ensemble at the total energy of the initial state. Basically while the
total energy of the system is conserved, there is nevertheless an energy flow from the
low momentum states to high momentum states thus effectively making the system
more and more ordered as time progresses.

In the “canonical” approach on the other hand, it is permissible to add dissipative
terms to the equation of motion of ψ. A simple additional damping term to the GP
equation leads to a model expected to be in the same universality class of the so-
called Model-A [10,7]; this model is, however, not acceptable: it violates the local
conservation of the particle density, and, as discussed before Eq. (3), it is necessary
[10,14] to introduce the density fluctuation field, m(r, t); the value of |ψ(r, t)|2 is then
the contribution to the particle density from the low momentum states, while m(r, t)
represents the density fluctuation from all states; the Poisson bracket in this case is



{m(r), ψ(r′)} = ig0ψ(r)δ(r − r′). This is model F in the language of Ref. [10]. (It is
probably also necessary to introduce additional fields to account for other conserved
quantities: a momentum density as in Model H or an energy density as in Model C
of Ref. [10].) Note that the strength of the crucial precession term in the dynamics is
controlled by g0 which is an adjustable phenomenological parameter (however, in the
Hamiltonian dynamics of the microcanonical approach, there is no such freedom).
Numerical study of coarsening using model F could thus be complicated by crossover
effects associated with the adjustable value of g0 (g0 = 0 corresponds to the purely
dissipative model-A dynamics, which is clearly in a different universality class).

We therefore restrict our numerical study here to the “microcanonical” approach
to coarsening using the GP equation. These results are the subject of the following
Section.

5. Numerical Results

All of the numerical results obtained so far are consistent with the simplest
naive scaling hypotheses described earlier, and do not require the introduction of
two length scales, as was necessary in the linear model of Section-3 (though we have
not yet obtained numerical results on unequal-time correlations, for which the linear
model F clearly displayed two length scales). We will present results both in d = 2
and d = 3. The d = 2 system allowed us to study larger sizes with better finite-size
scaling properties.

We discretized Eq. (6) on a lattice, and integrated in time using a fast Fourier
transform based algorithm which conserved energy and particle number to a high
accuracy. We work in units where the lattice spacing is unity and choose the scale
of the lattice field to make the number density unity also. We set u to be approxi-
mately 0.25 so that we are considering a dilute gas. We choose an ensemble of initial
conditions with a narrow distribution of energy, whose width goes to zero in the
thermodynamic limit. We assign initial values to the Fourier components ψ(k, 0) as
follows: ψ(k, 0) =

√
n0(k) exp[iφ(k)] where the φ(k)’s are independent random vari-

ables chosen from a uniform distribution with range [0, 2π] and the function n0(k) is
chosen to ensure that initial real-space correlations are short ranged (corresponding
to a “high-temperature” configuration) while still having low enough energy so that
the equilibrium state corresponding to this energy is superfluid. Though the ensem-
ble of initial conditions is not strictly the Gibbs distribution at any temperature, it is
however expected that the precise details of the initial conditions do not matter for
the late time universal properties as long as the initial correlations are short ranged.
More specifically we chose

n0(k) =
c

[ε(k) + µ1]
1

[1 + exp{(ε(k)− µ2)/T}] , (7)

where ε(k) is the Fourier representation of the lattice version of the Laplacian and
c sets the overall scale of n0(k). Here one chooses the parameters µ1, µ2, and T
to achieve the appropriate trade-off between energy and correlation length. Note
that this careful choice of initial conditions is needed as the GP equation does not
have any explicit dissipation and the system evolves in the phase space on a constant



0

200

400

0 50 100 150

S
(0

,t)
 / 

L

t / L

L=16

L=32

L=64

0

0.5

1

0 0.2 0.4 0.6

L 
G

r / L

z

2−
η

η

Figure 1. Numerical results from the simulation of GP equation in d = 2. The
number of particles in the zero momentum state is S(0, t) and the figure shows its
scaling properties as a function of the system size L and time t. The inset shows
the scaling of the equilibrium equal-time correlation function G(r, t→∞). The best
scaling collapse was obtained in both plots for η ≈ 0.27 and z ≈ 1.1. The scale of all
axes (except the values of r/L) are arbitrary.

energy surface. So, one has to choose this constant energy surface via tuning the
initial conditions in such a way that ensures that there are indeed some long-ranged
configurations on this surface where the system can finally go to. The point is that if
there are such long-ranged configurations on the constant energy manifold then the
dynamics of the system evolving via the GP equation takes the system automatically
and irreversibly (in the thermodynamic limit) to those long-ranged configurations.
So the choice of this complicated initial condition just ensures that there are indeed
such long-ranged configurations on the constant energy surface.

We tested the finite size scaling form mentioned in Section-2 for the equal time
correlator: G(r, t) = L−ηΦG[r/L, t/Lz ] where η = 0 in d = 3 and in d = 2, η is the
exponent associated with the final equilibrium state. We also computed the number
of particles in the k = 0 mode S(0, t) expected to scale as S(0, t) ∼ L2−ηΦ[t/Lz] as
mentioned also in Section-2.

Results for d = 2 are shown in Fig. (1). We performed finite-size scaling
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Figure 2. Numerical results for the GP equation in d = 3. The notation is as in
Fig. 1, with the exponent z ≈ 1.15.

analysis for L = 16, 32, and 64 and found reasonable data collapse with η ≈ 0.27 and
z ≈ 1.1. The value of η indicates that we are at a nonzero temperature close to TKT ;
strictly speaking we must have η ≤ 1/4, but the value of η is relatively T independent
near TKT , and the discrepancy is within our numerical errors. The value of z is in
sharp contrast to the z = 2 (with logarithmic corrections) result obtained by various
groups [15,16] for the purely dissipative Model-A dynamics [10] (obtained from Model
F by setting g0 = 0 and ignoring the m field) of classical XY spins. Although we have
determined the value of z for a quench to a particular temperature Tf = 2πη ≈ 1.695
(in units of kB = 1), we expect that z is same for all 0 < Tf < TKT . Results for
d = 3 are shown in Fig. (2) for linear sizes L = 16 and 32. The data collapse is not
as good as in d = 2, but again we obtained a z ≈ 1.1. Thus our numerical results,
both in d = 2 and 3, are consistent with a value of z = 1, which is also the result
suggested by the exact calculation in the phase only model F of Section-3.

6. Conclusion
We close with some physical discussion on reasons for the difference between

the deterministic GP model, and quenches in the stochastic and purely dissipative
Model A [15,16]. The dynamics in the GP model proceeds via the annihilation



of nearby vortex-antivortex pairs (in d = 2) as in Model A. However there is an
important difference between the two in details of the vortex motion. In Model A,
oppositely charged vortices attract each other with a force that falls off as the inverse
of their separation (apart from logarithmic corrections). The overdamped dynamics
causes the vortices to then move towards each other with a velocity proportional to
attractive force, and this implies l(t) ∼ t1/2. In the GP model, on the other hand,
the situation is much more complex. In addition to vortices, the system also has a
propagating “spin-wave” mode arising from the “streaming” terms in the equation
of motion. The finite velocity of this propagating mode gives rise to the linear length
scale l(t) ∼ t. A pair of oppositely charged vortices, apart from interacting with
the spin-wave background, also has an attractive force between them. However, now
the underlying dynamics causes the pair to move with uniform velocity in a direction
perpendicular to the line joining them (the force leading to this motion is often called
the Magnus force). These qualitative differences in the nature of the defect dynamics
change the universality class of the coarsening process of the Bose evolving via the
GP equation.

In summary, we have presented evidence, both analytical and numerical, that
the phase-ordering dynamics of an isolated Bose gas belongs to a new universality
class. A particular conclusion of this work is that the condensate density of the Bose
gas, following a sudden quench from the normal to the superfluid phase in dimensions
d ≥ 2, will grow at late times in a power law fashion as td/z before saturating to its
final equilibrium value. Our work, both analytical and numerical, provide evidence
that z = 1 for the Bose gas evolving via the GP equation. Whether this value of z
is same as that of the “canonical” Model-F of Ref. [10] remains an open question.
In fact, recent numerical results on “canonical”, stochastic Model-F do indicate that
the value of z might be 2 for that case [17]. (We speculate this may be because while
Model-F has accounted for the conserved number density, it has not accounted for
the conserved energy and momentum densities of the GP dynamics.) While the value
of z may be different for different dynamics, the scaling prediction of the power law
growth of the condensate density ∼ td/z at late times remains valid and needs to be
tested experimentally. How this simple scaling gets modified in presence of harmonic
traps has been discussed in Ref. [18].

Given the latest advances in the experiments on Bose systems as we heard from
various exciting talks in this conference, we may conclude with the hope that ex-
perimental verifications of our theoretical predictions summarized in the preceding
paragraph may not be far off.
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