ELSEVIER

Nuclear Physics B (Proc. Suppl.) 45A (1996) 38-49

PROCEEDINGS
SUPPLEMENTS

Landau theory of quantum spin glasses of rotors and Ising spins

N. Read™ and Subir Sachdev!

Department of Physics, Yale University,

P.O. Box 208120, New Haven, CT 06520-8120
and

Department of Applied Physics, Yale University,
P.O. Box 208284, New Haven, CT 06520-8284

Recent work on the zero-temperature phase transition in a quantum spin glass of rotors or Ising spins is

reviewed.

1. INTRODUCTION

This paper will be a review of our recent work,
done in collaboration with J. Ye [1] and R. Opper-
mann [2]. We consider some of the simplest quan-
tum generalizations of classical spin glass prob-
lems, in which, for the sake of definiteness, the
Hamiltonian can be taken to be one of the follow-
ing: (i) The Hamiltonian #; of the Ising model
in a transverse field:

H{z—g}:o‘f— Z Jijoias. (N
1 <ij>

Here ¢*,c° are the &, z components of the three
Pauli spin operators, with the Pauli operators on
different sites commuting with each other. Each
site, therefore, has an Ising degree of freedom,
represented by the eigenvalues of the ¢7. The &7
is the kinetic energy term (due to the transverse
magnetic field) and induces on-site flips of the
Ising spins. (i1} The Hamiltonian H g of quantum
rotors:

HR:%ZfJ?_ Z«]z‘jflz"flj (2)

Here, the M-component vectors n;, with M > 2,
are of unit length, n? = 1, and represent the ori-
entation of the rotors on the surface of a sphere in
M -dimensional rotor space. The operators Liuv
(0 < v, p,v=1.M)are the M(M - 1)/2

components of the angular momentum L; of the
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rotor; the first term in H g is the kinetic energy
of the rotor with 1/g the moment of inertia. The
different components of n; constitute a complete
set of commuting observables and the state of the
system can be described by a wavefunction ¥(n;).
In either model, the sum < ij > 1s over nearest
neighbors sites on a hypercubic d-dimensional lat-
tice, and the J;;’s are drawn independently with
a common (Gaussian probability distribution of
mean zero and variance [J7] = J? (throughout,
the square brackets [...] will denote the average
with respect to this distribution). Model (1) can
be considered as the M = 1 case of model (i1}, and
the models have global O(M) symmetry (note
that O(1)= Z;). We introduce a unified notation
Siu, with M > 1, such that

) nyufor M >2
Sip = { ol for M =1. " (3)

which will be useful for writing the correlation
functions later.

We have also studied a model of a metallic
quantum spin glass [2]. Some differences of the
properties of this model from those of models (i)
and (ii) will be described in Section 6.

In quantum or classical statistical systems with
quenched disorder, the thermodynamic quanti-
ties and correlation functions, etc, generally de-
pend on the random variables in the Hamiltonian
(here Ji;), and so are themselves random vari-
ables. The goal is to find averages over the disor-
der (or higher moments, or even distribution func-
tions) of thesc cxperimentally relevant quanti-
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ties. This procedure defines the term “quenched”
which was used above. For this purpose, the so-
called replica method 1s often employed, and will
be used herein.

Spin glass and spin-glass-like problems are de-
fined by the property that the natural order pa-
rameter, that distinguishes the ordered phase
(where the order parameter is nonzero) from the
non-ordered phase (where it is zero), and which
for our models would be (S;,), is a random vari-
able with zero mean, and one must consider the
variance, [(S;)?], in order to find a quantity
that does distinguish the two phases of the sys-
tem. This is known as the Edwards- Ander-
son order parameter qp4. (Throughout, angle
brackets (...) will denote quantum and/or ther-
mal averages using the Hamiltonian, such as that
of models (i) or (ii), which depends on the ran-
dom variables.) Quantum spin glass problems are
low temperature spin-glass-like problems where
quantum mechanics plays a significant role, espe-
cially when the transition occurs at zero temper-
ature, by varying some parameter such as g/J in
our models. Part of the motivation for studying
such problems comes from experiments. Experi-
mentally studied systems include magnetic sys-
tems where the application of the “spin” lan-
guage used here is fairly direct; these include a
transverse field Ising system [3], the high T, sys-
tem Lag_,Sr,CuQ4 at small z, and the “heavy
fermion” compound Y;_,U,Pds [4]. (Some of
these systems may require the use of Heisen-
berg spins in which, unlike the models consid-
ered here, the components of the spin opera-
tors Sj, obey the commutation relations of an-
gular momentum at each site. These models
have been considered in [5], where the param-
agnetic phase is studied.) Other physical prob-
lems having spin-glass-like aspects include metal-
insulator transitions, superfluid-insulator transi-
tions, and the transitions between quantum Hall
plateaus. Thus quantum problems with random-
ness, in general, and spin-glass-like problems, in
particular, are of considerable interest in con-
densed matter physics.

We next describe the expected phase diagrams
for our models. In sufficiently high dimensions,
we expect a T)/J versus g/J phase diagram like

T/J

Thermal
fluctuations
PARAMAGNET
SPIN
GLASS Quantum
fluctuations
glJ
Figure 1.

that in Fig. 1. Here g/J is a dimensionless pa-
rameter describing the relative strength of quan-
tum fluctuations. The phases at zero tempera-
ture can be understood by considering the limits
J =0and g = 0. In the limit J = 0 (where all
Jij = 0), both H p and H possess non-degenerate
ground states which preserve the global symme-
try. For the rotors, each site is in the spherically
symmetric ‘s-wave’ state (using the language of
M = 3). Similarly, each Ising spin is in the eigen-
state (Jo? = 41) + |6° = —1))/v/2 of 6% with
eigenvalue +1 and so is Zs invariant (Z2 symme-
try is in fact implemented by the action of [ [; o7).
In both cases, the J;; = 0 ground state is sepa-
rated from the first excited state by a gap of or-
der g. It is therefore reasonable to consider the
Jij’s as perturbations in this limit (though the
random nature of the J;; causes some problems
which will not be discussed here) and to expect
that this “quantum- disordered” or paramagnetic
phase persists at finite values of J. In the oppo-
site limit, where g is zero, the Hamiltonian re-
duces to that of a classical spin glass. The inter-
action terms proportional to the J;; would pre-
fer a ground state in which each rotor or Ising
spin has a definite orientation which minimizes
the exchange energy, breaking O(M) symmetry,
and quantum fluctuations are absent; this state
1s the ground state of the classical spin glass. A
small g will not necessarily destroy this phase, in
sufficiently high spatial dimension. We therefore
expect that both ordered and disordered phases
exist at zero temperature, at least in sufficiently
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high dimensions d. At finite temperature, the
question of the existence of a phase transition
from paramagnet to spin glass can be settled clas-
sically, by standard arguments, and moreover, if
there is a transition on some phase boundary as
indicated in Fig. 1, its universality class will be
the same as that of the classical spin glass model
for all 7 > 0. The transition point on the zero
temperature axis, however, will be in a distinct
universality class because quantum fluctuations
cannot be ignored (at least, not for any obvious
reason). It is the vicinity of this point which
1s our main object of study. For the classical
model, there will be no transition when the di-
mension d is less than some lower critical dimen-
sion for the classical problem, d < d'*5. However
the zero temperature quantum transition proba-
bly survives down to a lower dimension d}. In
the range dj'" < d < d5°, the phase diagram
has a transition point on the zero temperature
axis, but no phase boundary at finite 7" entering
it. However, the existence of a transition in the
ground state is still revealed by the difference be-
tween the order parameters in the ground states
on either side.

A phase diagram of the same form as in Fig. 1
is in fact obtained exactly within an infinite range
version of the spin glass models in the M — oo
limit [7]. The infinite range models provide a
mean field description of the critical phenom-
ena, just as they do in the classical case. In the
quantum case, however, these models cannot be
solved exactly in general, but their critical prop-
erties can be obtained [6,7]. The approach [1]
we describe here complements and extends the
methods used in those papers; it provides, by the
use of a Landau theory, a simple view of the ex-
act mean field critical exponents and universal
crossover functions obtained in [6,7]. The Lan-
dau theory involves an expansion in powers of the
order parameter, momenta and frequencies, and
so is expected to be valid at most for the univer-
sal long-distance, long time properties near the
zero-temperature critical point.

2. LANDAU THEORY

We begin by sketching an explicit derivation of
the Landau effective action from a microscopic
model similar to models (i) and (ii). It is slightly
more convenient to work with soft spins rather
than the fixed-length quantum rotors or Ising
spins (although the derivation below can be ex-
tended to these cases). We begin with the path-
integral for these spins in the presence of a fixed
realization of the disorder

/DS,,, exp(—/d'r{ﬁo(siu)

= > JiiSiuSin })

<ig>

VA

1 . m? u 2
Lo = Z [g (0rSin)” + 755“ +3 (S%) ] .
(4)

This action may be interpreted as that of M-
component harmonic oscillators on the sites 7 of
a d-dimensional lattice, with a non-linear self-
coupling v and a random nearest neighbor inter-
action J;;. We now introduce replicas (indexed
by a =1, ..., n with n — 0) and average over a
Gaussian distribution of the J;;. We obtain the
replicated, translationally invariant result:

7] = /DS?peXP<—/dT250(Sfu)
-5 Y [dndn Y snm)siin)
ab

<ij>
St (r2)S" m)). (5)

Now, as in classical spin glasses [8], we decou-
ple the quartic term by a Hubbard-Stratonovich
transformation:

J2
z" = / DQ, exp<—7 / dry drs

Z Z Q?;?V(Tl ) TQ)I(i__jIQ?ZU (Tla TZ)

i,j ab

+In Zs[Q])



N. Read, S. Sachdev/Nuclear Physics B (Proc. Suppl.) 454 (1996) 38-49 41

/DS;’u eXp<—/dT Zﬁo(sfu)

._/dTl dTQ ZZQ?SV(TI’TZ)
ab

S (r )s,,,(rz)) (6)

where K;; is the incidence matrix of the lattice,
equal to 1 when i, j are nearest neighbors, 0 oth-
erwise (including ¢ = j). Here we see a distin-
guishing feature of the quantum spin glass prob-
lem: @ 1s a function of two (imaginary) times,
due to the randomness being time-independent.
We now expand In Zg[@] in powers, not of
itself, but of Q4% (x,, 1) — C8245(r, — 73) for
a suitably chosen value of C, to be explained be-
low; the constant C' can then be absorbed into
Ly and becomes part of the quadratic Sfﬂ term,
which can be shown to remain stable at small u.
At the same time, we keep only the terms with
few derivatives with respect to time or space.
This procedure yields the Landau functional
(recall that we are using the Einstein summation
convention for the O(M) vector indices):

TI=T2=T

+ % /drl dry Z[VQ“z(a: 7'1,7'2)}2

a,b

K
'g/dTl dre dry Z Quu z, 7, T2)

a,b,c

bi,(z rz,rg,)QW(x 73,71)
/dr Z
+0Q% (2,7, T)Q% (x, T, r)]}

2t2 d x/d‘rl dry ZQW z,T,T)

o (I 7-27T2)+ (7)

(z,, T)Q/w(x T,7T)

There are four terms in 4 whose co-efficients con-
tain products of powers of only two coupling con-

stants, £ and ¢; this form can be reached without
loss of generality by suitably rescaling the space
and time co-ordinates. The reasons for our rather
peculiar choices for these couplings will only be-
come evident when the structure of perturbation
theory is discussed. We have only retained the
terms which our later power counting will tell us
are relevant or marginal in high space dimension
d, together with the leading irrelevant term. The
exception to this statement is a quadratic term

/ddx dr dm Z [QZﬁ(z, I, 1'2)]2 (8)
ab

which appears to be highly relevant in all d.
However, it is a “redundant” operator as it can
be removed by a further transformation @ —
Q — C38%6,,6(my — 73) for a suitable choice of
C. This relies on the presence of the cubic term
with coefficient «/¢. Thus, the constant C can
be chosen such that, if r is redefined to absorb
a constant, the action has the form given in (7).
We will see that this choice of definition of @ to
eliminate the term in (8) also makes ((@}) = 0
at w = 0 and ¢ = g.. (We have introduced dou-
ble angular brackets to represent averages taken
with the translationally invariant replica action.)
It follows that {((Q)) will be small for ¢ & g, and
w = 0, so that the Landau theory expansion of A
in powers of ) 1s valid. This leaves r, the coupling
in the term linear in @, as the parameter expected
to drive the system through its transition.

A few last remarks on the action A:
The rather unfamiliar looking time deriva-
tives in the linear term can be seen to fol-
low from a gradient expansion of a term like
fddrdﬁdrg %(z, 1, m2)f(T1 — o) where f(7) is
an even functlon of 7 which falls rapidly to zero
within a 7 of order 1/g. All the terms in A
are generated by the expansion of In Z5[Q], with
the exception of the last 1/t? term.There are two
routes to generating such a term:

(1) Renormalize the functional integral over @ it-
self, by diagrammatic perturbation theory in Q.
At order x? one finds a Feynman diagram that
generates a term of the form of the final term in
A. Thus, even though it is absent in the bare @
action, it will eventually appear. For the renor-
malization group analysis later, it is therefore ad-
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vantageous to include the 1/¢* term at the start-
ing point.
(#¢) Introduce additional on-site sources of ran-
domness in £;. Randomness in the value of m?
couples to the [Sfu(r)]Q, an operator which is es-
sentially the same as Q®%(z,7,7). Integrating
over the randomness will then generate the 1/t
term. Randomness in ¢ or @ has the same effect.
The terms with coefficients u/t and v/t arise
from quartic couplings of the spins within a sin-
gle replica. They are the only terms retained that
break replica O(n) symmetry to S, permutational
symmetry. If they were omitted, the action would
describe randomly coupled simple harmonic oscil-
lators, which is definitely an unstable system in
finite dimensions, and so anharmonic terms (and
hence u and v) are expected to be necessary for
stability.

Finally note that, apart from the delta-function
term at short times, @ represents in the long
wavelength theory

Zf,(x Ty, T2) Z > (2) (9)

€N (z)

where N (z) is a coarse-graining region in the
neighborhood of z. This will be useful in inter-
preting the theory.

3. MEAN FIELD THEORY

Given the action, the next step is to find an ex-
tremum, as a means to approximate the path inte-
gral by the saddle point method. The extremum
constitutes the mean field approximation for the
problem. This will then form the starting point
for the analysis of fluctuations around the mean
field theory, which will require the use of renor-
malization group techniques in general.

The mean field approximation is more accu-
rately called the tree approximation, z.e. there
are no momentum loop integrations for fluctua-
tions. For the infinite range model, where spatial
dependence of () can be dropped to obtain either
thermodynamic quantities as averages over the
whole system, or onsite correlation functions, this
is exact and constitutes a simpler rederivation of
results obtained earlier [7]. For the short-range fi-
nite dimensional quantum models, as in the clas-

sical case [8], mean-field theory should be a useful
starting point towards understanding the overall
phase diagram and properties of the phases. For
the critical properties of the quantum transition,
the mean-field theory is an approximation whose
validity as an attractive weak-coupling fixed point
under the renormalization group in sufficiently
high dimensions will be examined later. Here
we will concentrate on the correlators, and study
only the paramagnetic phase and critical point.

The saddle-point and perturbative analysis are
most conveniently performed in momentum (k)
and frequency (w) space. We will work at a fi-
nite, but small, temperature 7 = 1/8, and w
will therefore take values at the discrete Matsub-
ara frequencies. The normalization of the Fourier
transform is set by

Q(k,wl,WQ) =

ﬁ .
./ddm/ dTldT2Q("E1 T, Tz)el(kl'—wal—w27-2)-
0
(10)

In these Fourier transformed variables we expect
the saddle point-value of @) to obey the following
ansatz in the paramagnet and at the critical point

o (k,wi,wg) =
B0 ) 8 (Kb oo D). (1)

An explicit factor of 8 has been inserted to
make D(w) finite in the zero temperature limit.
The structure in the O(M) spin space follows
from spin rotation invariance, while the replica-
diagonal structure follows from the absence of a
static moment in the paramagnetic phase. In-
serting this into A in (7), we obtain for the free
energy density F/n (as usual, F/n represents the
physical disorder-averaged free energy)

% - mz[w D _§D3(w)]
+M”—+2tﬂ [%ZD(W)]Q. (12)

w

The contribution from the last 1/¢* term in A
vanishes in the replica limit n — 0 and is there-
fore absent. The stationary point with respect to
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variations in D(w) gives us the result

D(w) = _é(wuf)l/? (13)

where 7 is given implicitly by

F:r—(u+Mv)%Z(w +7)1/2, (14)

w

The sign of D(w) is determined by the fact that
the Fourier transform D(7) is positive. This so-
lution for D(w) is well-defined for # > 0, while no
sensible paramagnetic solution exists for # < 0,
suggesting that the critical line in the =, T" plane
between the paramagnetic and spin glass phases
is 7 = 0. The local density of excitations x"{w)
can be obtained by analytic continuation of D(w)
to real frequencies and 1s therefore

X" (w) = sgn(w) O(lw| - V7). (15)
There is a gap, A = V7, in the spectral den-
sity which vanishes at the critical point 7 = 0.
This gap is expected to be filled in at finite tem-
peratures by loop corrections involving inelastic
effects; in addition, Griffiths effects will lead to
sub- gap absorption at both zero and finite tem-
peratures.

i From (14) we determine that the critical point
7 = 0 occurs when

r = ro(T) E“““'EM (16)

The frequency summation is obviously divergent,
and the result will depend upon the nature of the
ultraviolet cutoff. However the temperature de-
pendence of the result is entirely in the subleading
term, which turns out to be cutoff-independent
(provided the cutoff is smooth on the scale of T').
The summation can be evaluated by the Poisson
summation formula, which yields:

K

re(T) = re — (u + Mv) 3 (17)

where for a high-frequency cutoff around A, ~ ¢

(u+ Mv)Az

re = r.(0) = o

(18)

The line between the paramagnetic and spin-glass
phases is shown in Fig. 1 in the r, T (or g, T)
plane.

The behavior of the “gap” parameter 7 close to
r = r. and at finite 7, is given by

47 (r—r7e)

u+MvZ)log A2/ (r—re)) 1
"7 3log AJT) w1
r=re(D)” ;°2( ) 11,

in three regimes I, I1, 111, characterized as follows.
Regime I, where (r — 7.)!/2 > T, is that of the
quantum paramagnet, where the properties are
those of the quantum- disordered ground state,
and thermal effects are not important. Regime II,
where T3> |r—r|*/?, is “quantum-critical”: here
the system behaves as if it is at the critical point
r = r., and the properties reflect those of the
critical ground state and its excitations; it is the
analog of the quantum-critical region discussed in
Refs [9,10] for quantum rotors in the absence of
disorder. Finally, in regime III, close enough to
the finite- temperature phase transition, where
(r — r(T))M? « T, classical effects take over
completely, and the behavior is that of the usual
finite-temperature spin- glass/paramagnet tran-
sition in the classical model {8]. Regime IIT also
extends into the spin glass phase, although here
we have only obtained results for its paramagnetic
portion. Notice that in regime I1I, 7 now depends
upon the square of the distance from the transi-
tion r — r.(T"): as will become clear from later re-
sults, 71/ plays the role of an inverse correlation
length, so this is just what is needed to transform
the quantum model with v = 1/4 to the classical
model with ¥ = 1/2 in mean-field theory. The
results (15) and (19) for the local spectral weight
and the asymptotic form of the gap, including
the logarithmic correction, are identical to those
obtained in the infinite range model by different
methods earlier [6,7]. The reason for the loga-
rithmic corrections, which are unusual in a mean
field theory, will be clarified in the context of RG
later; here we need only mention that they result
from the u and v terms which induce a frequency
sum, even in mean field theory.
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D represents the disorder average

Dir = 72) = 7 {Siu(r)Sn(m))] (20)

in the original random problem. At r > 7. (g >
gc), D decays exponentially with 7 as 7 — oo,
due to the gap A = /7 in the corresponding spec-
tral density; at ¢ = g., D decays as 1/72, and in
the ordered phase, D — constant = qg4. Thus
from the behavior of the gap A, we can define an
exponent zv, anticipating anisotropic scaling in
space and time, which takes the value zv = 1/2
in the infinite range model. Since D(r — ) is
the Edwards-Anderson order parameter, we may
also define an exponent 8 by gga ~ (g. —¢)” and
it is found that 3 = 1. At g = g. one expects
D(7) ~ 778/2% which is satisfied with the values
already obtained.

A quantity intimately related to the spin glass
long range order is the quantum mechanically dis-
connected correlation function

Gli~j,m—T,T3—Tq) =
[(Sin (1) Sju(72)) (Siv(73)Sju(Ta))] - (21)

Note that [(S;,(71)S;u(m2))] = 0 for i # j because
of the Z5 gauge symmetry, and no subtraction of
products of disorder averages is necessary, as a
subtraction analogous to that in (29) below will
vanish for this case. After coarse-graining both
t and j over their respective averaging regions in
the neighborhoods of z and y, we obtain the cor-
relator of the order parameter @

G(:E_yyrl — T2,7T3 — T4) =

lim ———— 3 (@2 (2, 71, 7) Q2 (v, 72, 7))

n=0n(n — 1) s
(22)

G will be found later to behave as the propaga-
tor for fluctuations of the @) order parameter field
about the mean-field theory, and is directly anal-
ogous to a corresponding object in the classical
spin glass.

This correlation function can be determined in
the tree approximation, from Gaussian fluctua-
tions about the saddle point. To do this we must
expand @ about its saddle- point value

(kw1 wa) = 88,0, 8%(2m) 169 (k)8 4 0 D(w1)

+ Qi (k, w1, w2) (23)

and evaluate correlators of Q. Expanding A to
order Q% we can obtain the propagator of the Q
field. It is easy to see that when a # b, this
propagator is in fact 1/M times the G correlator
(Eqn (22))

Mt
k24wl + 7+ Jwi+ 7
Note that this propagator has a factor ¢ in the
numerator and is independent of k—the factors
of k were placed judiciously in A to achieve this.
FFrom the form of (24) we can deduce that at
the critical point 7 = 0, |w| scales like k%, so the
dynamic exponent z = 2, while for # # 0 there
is a length scale ¢ ~ #=1/% 5o that the exponent
defined by & ~ (r — r;)™" in regime I is v = 1/4.

We can now define the correlation exponent 7.
The basic correlation function is G, and we define
n by

G(k,0,0) ~ k=247 (25)

Gk, wy,wq) = (24)

so that » = 0 in mean field theory, as is con-
ventional. In real space, G then decays as
z~(d+22=247)  Qur definition, though conven-
tional in its relation to mean field theory, differs
from that used in two recent papers [14,15]. Their
n, which we call 7, is related to ours by 7’ = np+z.

An important susceptibility is related to this
correlator. The Edwards-Anderson spin-glass
susceptibility x4 is given in the paramagnetic
phase by

Xsg = Z [X?j] (26)

where
XUzjﬁw&AM%Aﬂr (27)

and 1s analogous to the corresponding object used
in the classical theories. After coarse graining we
have the expression in terms of G

Xsg = /ddIdTldTQG(ry71;TZ)- (28)

A second correlator arises upon considering
fluctuations (due to the randomness) of the on-
site spin correlation function (Si,(71)S;is(72)).
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The second cumulant of these fluctuations can be
obtained from a quantum mechanically discon-
nected correlation function
GlUi—jm—Te,ma—Ta) =

[(Si(71) S (72)) (S (73) Siu (7a))]

= [(Siu(m1) Sin (r2))] [(Sjv(73) S (ra))] - (29)
After coarse graining this becomes another two-
point correlation function of the order parameter,

Q,

Gd(x — Y T1— T2, T3 — T4) =

. 1
i e 2 K e )
— D(r — m3)D(73 — 74) (30)

obtained as before by averaging over ¢ and j in
neighborhoods of z and y. The analog of G¢ in a
classical spin glass is trivial, since S?, = 1.

The Gaussian approximation for G¢ can be eas-
ily obtained; it is
1 G(k,wl, —wl)G(k,wg, —WQ)

d(k = .
Gk wn, o) 2 (14 (u + Mv)L(0, k, 7))2
(31)
Note that G¢ is independent of t. Here
L(w,k,7) =
S !
BT R+ VR +74+/(Q-w)?2+7
1 A
~ —1 d 32
2m Og(max (kz,lwl,\/?,T)) (32)

is a frequency integral.

We can define another exponent for G¢, in anal-
ogy with the random field Ising model, by
G4(k,0,0) ~ k=7 (33)
so that 7 1s also zero in the Gaussian approxima-
tion. In real space G ~ ¢~ (d+22-4+7)

Finally, to exhaust the set of different two-point
correlators of the ) field, we consider the con-
nected correlation function G¢, which is the dis-

order average of the fully connected correlator of
4 spins:
G;Czupo(i —j1 TL — T4,T2 — T4,73 — T4) =
[<S"“(TI)SiV(TQ)SjP(T3)SjU(T‘l))con] .
(34)

A second susceptibility which can be associated
with the spin-glass order is the non- linear sus-
ceptibility, xn:, which is given by

Xnl = /ddmdndrgdrngln(z, T1, T2, T3). (35)

The Gaussian approximation for G¢ is similar to
that for G¢ and will not be given here; we will
only note that unlike G¢, it contains a factor ¢. It
is found that, even neglecting the denominators
that contain L, G¢ and G¢ both vary as G2, so are
more strongly divergent at long wavelengths than
G. Discussion of the exponents will be continued
below.

4. RENORMALIZATION GROUP

We now turn to the effects of fluctuations on
the critical properties. We begin with power-
counting (dimensional analysis) considerations.
We will study the properties of A under the
rescaling transformation

' ==z/b ' =1/b (36)
where z i1s the dynamic critical exponent. The
coupling t will play a special role in the following,
and it has its own rescaling transformation

t=th%. (37)

The exponent —@ will be the scaling dimension of
t near a fixed pomnt with ¢ = 0; all fixed points
found below in fact will have ¢ = 0, and 6 > 0,
making ¢ a (dangerously) “irrelevant” coupling.
As is conventional, we define the anomalous di-
mension 7 such that n = 0 in the approximation
in the previous section; in RG this means that
the coefficient of the (VQ)? term is not rescaled
at tree level. This imposes the field rescaling

QI — Qb(d_0+22_2+n)/2. (38)

The exponents z and # will be fixed by demanding
that the transformations of the 1/xt linear term
with time derivatives, and the 1/¢2 quadratic cou-
pling, are consistent with (37) and the RG equa-
tion for the cubic k/t coupling.

It is now a simple matter to determine the tree
level rescalings of the remaining couplings (we de-
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termine the rescaling of « from the cubic term):

= ph2? Kk = K,b(6+6_d_3")/2

—_— 9Dz —
W = ub? iy = pblimEm,

(39)

The full action remains invariant at tree level un-
der these transformations if we choose

=2 g=0 60=2 (40)

We see then from (39) that w and v are always
marginal, while x becomes relevant below d = 8.
As 0 is positive, t is irrelevant and flows towards
t = 0. The marginality of u and v is the reason
for the logarithms in the mean field result.

We will not delve into the full one-loop RG
equations here; the details are given in [1]. Ba-
sically, there are three couplings that control the
flows, namely k, u, and U = u 4+ Mwv; in this
parametrization, the equations are independent
of M. The main point can be grasped by exam-
ining an over-simplified flow equation for x that
neglects terms of order U

de  8—d
¢ 2
This has a fixed point at k? = (d — 8)/9, in ad-
dition to that at & = 0 whose stablity was ana-
lyzed by power counting above. Thus, similarly
to the full equations, there is a fixed point for &
at k2 > 0 for d > 8, which can be seen to be
unstable, while below d = 8, there is no fixed
point with « real, except for k = 0 which is un-
stable. (This is the reverse of the usual situation,
for example in A¢* Landau theory of a ferromag-
net, where all positive couplings A flow to zero
for d > d, = 4, and to a stable fixed point value
of order d, — d for d < d,.) As a consequence,
our theory has definite problems below 8 spatial
dimensions, and even above 8, there is the possi-
bility that the bare value of k places us above the
fixed point value that separates flows to zero from
flows to infinity, rendering the mean field critical
theory invalid there too.

K+ 9k, (41)

5. SCALING HYPOTHESES

In spite of the difficulties revealed by the RG
analysis, we may try to formulate a scaling the-
ory for the critical properties, which, by using

only general considerations and not the Landau
theory, could be valid even at the “true” or strong
coupling (k — oo, if this continues to mean any-
thing) RG fixed point. Because of the importance
of the dangerously irrelevant (DI) variable ¢ in the
Landau theory and to gain greater generality, we
will assume that such a variable, also denoted ¢
with scaling dimension —8 < 0, exists in the scal-
ing theory. We assume that there is only this
one DI variable; we expect that the coupling &
that i1s also DI in Landau theory for d > 8, will
not be at the strong coupling fixed point, as in
ordinary critical phenomena. The extension to
include more DI variables is straightforward, and
of course if none are present, one can simply set
f = 0. Moreover, it will be assumed that ¢ ap-
pears in a similar way as in the Landau theory,
which contains a 1/t? term as well as 1/t terms.
This means that 1 each realization of disorder, ¢
plays a role similar to A in quantum field theory
(or T in classical statistical mechanics): when it
is small, certain types of disorder-induced fluctu-
ations (those directly responsible for determining
the local position of the critical point) dominate.
(The analogy is not exact because of the internal
frequency integrals that can occur even in tree
diagrams in @ within Landau theory.)

Defining G% as in Section 3, we have already
defined the exponent 7 by

G, 1, 7) ~ g~ (dF22447) (42)

for fixed 7/z* at criticality; there is no depen-
dence on t on the right hand side. Thus the di-
mension of () ~ SS when the spins are separated
in time is (d + 2z — 4 + 77)/2. Therefore also

D~ T—(d+22—4+ﬁ)/2z. (43)
The spin glass correlator, G, (recall (22)) vanishes

ift = 0, so is proportional to t (ast — 0) and thus
behaves as

G(z,0,0) ~ po(d+22-447+8) (44)

Comparing with the definition of 7, G ~
e~ (d+22=24n) yields

0=2+n-1. (45)

i From these we may obtain other scaling rela-
tions, e.g. the spin-glass susceptibility xs¢ ~
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(r—re)”7 with
v =27, (46)

and the order parameter ¢ = [(5)2] ~ (re — r)?
with
5:(¢+%—9—2+mg.
In general, the usual scaling relations are obeyed,
except that hyperscaling involves d + 2z — 6 in
place of d for classical critical phenomena when-
ever the bilocal field is involved (hence the 2z)
and the 6 is due to the DI variable ¢. On the
other hand, for a field that is local in time d is
replaced by d+z—6. Thus the free energy density
scales as (r — r.)(9+2=8% a5 + — 7., and the spe-
cific heat at finite temperature T'— 0 at r = r,
behaves as T(4=8)/2; the values z = 2,6 = 2 yield
T3 at d = d, = 8 in the Gaussian theory, as was
obtained directly in the infinite-range model [7]
and from the mean field theory in [1].

A local variable, which has not been introduced
so far, but is important for the present scaling
considerations, is the “thermal” operator ¥(z, 7).
This variable couples to the control parameter r
that tunes the system across the quantum tran-
sition:

Y(z,7) = Su(w,T)Su(l',T) (48)

in a single replica of the system. For the discon-
nected correlator of ¢ we may define at criticality

[((@, 1)) ((0, 72))] ~ 2~ (4= 4+7%) (49)

(so that the Fourier transform ~ k~*+7+; note
the correlator is independent of 7y, m) so that
the scaling dimension of ¢ is (d —4 4 7y)/2. The
connected correlation function then goes as ~ ¢
and so

~(d=4+8+7y)

(47)

~Z
= p—(d+z-24ny) (50)

(from k~2*7% in Fourier space) and hence
0=2+z2+ny — 7. (51)

As usual the dimension of ¥ determines that of
r—7., and hence the value of v, through modified

hyperscaling, that is

1 1
Z o= G- —(d—4+7
” d+z 2( + 7y)
1
= ld+z—-0+2-my). (52)

An interesting rigorous inequality was proved
by Schwartz and Soffer [11] for the exponents 7,
7y in any system where a local field 1 couples to
Gaussian disorder, as is the case for our 3. Ex-
tending their proof to the case where the disorder
is time independent, we obtain

My < 21y (53)

and hence from (51) > 2+ z — ny. Using (52)
this implies
2

This inequality was proved by Chayes et al. [12].
The present approach appears easier but rests
upon the use of a scaling relation to obtain v.

For the classical random field Ising model, it
has been claimed that 7y = 21y is satisfied as
an equality [13]. This would imply that the cor-
relation length at 7" = T, due to a uniform field
h would go as § ~ h=2/¢. However we find the
proof unconvincing, though series results do seem
to show that the equality is accurately obeyed in
d = 3,4,5 in that problem.

Since 1) = S? it is tempting to equate the scal-
ing dimensions of Q and ¢ (d+ 2z —4 + 7 =
d — 4+ 7jy) and obtain using (45) and (51)

Ny =z +7. (55)

However 9 involves bringing spins S to the same
time as well as position (and summing over spin
indices) and so may have different renormaliza-
tions than Q. Thus we do not expect this rela-
tionship to hold.

We now compare the above relations to Monte
Carlo results for M = 1 in d = 2 [15] and
d = 3 [14]. Their results are v~ ~ 1.3, 2 = 1.3
(d=3)and v! ~ 1, 2 ~ 1.5 (d = 2). They
examined scaling of several susceptibilities, most
of which are related to G and hence involve 7 in
straightforward ways; however their definition of



48 N. Read, S. Sachdev/Nuclear Physics B (Proc. Suppl) 454 (1996) 38-49

7 is what we denote 7' = 1 + z. In our nota-
tion their results are n ~ —0.2 (d = 3), n ~ —1.0
(d = 2). (We have corrected an arithmetical er-
ror in the paper by Guo et al. [14]: ' = 1.1,
not 0.9.) They also examined xn; which is re-
lated to G° (Eqn (35)) and find that its scaling
dimension is consistent with the assumption that
Xnt ~ L?T27" with the same 7 as the other sus-
ceptibilities.

The numerical results cited so far give no test
of hyperscaling, but Guo et al. [14] also studied
D, obtaining D(r) ~ 7713, Using the scaling
relations and values of exponents in d = 3 we ob-
tain # =~ 0.0. This may mean that conventional
hyperscaling is obeyed, though because of uncer-
tainties in exponents, a small positive 6 cannot
be ruled out. Clearly more work on this point,
and tests of other scaling relations, would be wel-
come. It is interesting that in both d = 2 and 3,
v~! a5 d/2 and this also holds ezactly in the d = 1
model [16]—this raises the question whether the
inequalities (53), (54) are saturated; at present
we have no argument why this might be so.

6. METALLIC SPIN GLASS

Here we add some remarks on the distinctive
features found in another spin glass model that
we have studied by similar Landau theory tech-
niques, the metallic spin glass [2] (the same model
has also been studied by Sengupta and Georges
[17], using the techniques of Ref. [7]). In this case
the kinetic terms in the action are modified, from
w? in the preceding models, to |w|, which repre-
sents the long-time persistence of local spin fluc-
tuations in a metal. This change has the effect
that the mean field value of z is 4, and that the u
and v couplings are now (dangerously) irrelevant
with eigenvalue —2 in the same approximation.
The critical fixed point theory is now found to
be static, that is it involves only zero frequency
fluctuations. In the general scaling scenario, the
three 2-point functions of ) have three indepen-
dent scaling dimensions, and the divergence of the
non-linear susceptibility is weakened. In addition,
we speculated that additional scaling relations

s=vl=(d—0+2-1)/2 (56)

apply in this case.

7. CONCLUSION

To conclude, we have solved, in mean field the-
ory, the problem of the zero-temperature quan-
tum phase transition in the quantum spin glass
models defined here. Some questions about the
validity of this theory were raised by the RG near
the upper critical dimension d = 8; in particu-
lar, we found no extension to non-mean-field ex-
ponents below d = 8. These may indicate that
“Griffiths phase” effects are important in deter-
mining the critical properties. Nonetheless, our
Landau theory approach is of such a canonical
nature, that we expect it to be of value in future
work on this problem.
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