
Spin glasses enter the quantum regime

Spin glasses are among the most interesting and complicated forms of condensed matter.

Their study has justifiably engrossed a large number of experimental and theoretical physi-

cists over the last two decades. With rare exceptions, this work has been in a regime where

the quantum-mechanical nature of the microscopic constituents could be ignored, and the

collective properties of the sample were essentially classical. Understanding the experimen-

tal properties of spin glasses then became a problem, albeit difficult, in classical statistical

mechanics. Impressive advances have been made in theory and experimental technique, and

have been accessibly presented in recent reviews [1]. However, recent experiments by a group

led by T.F. Rosenbaum at the University of Chicago and G. Aeppli at AT&T Bell Labo-

ratories [2], have given renewed impetus to the study of spin glasses in a heretofore largely

neglected quantum regime; in this regime, quantum mechanics plays an essential role even

in the bulk, collective properties, and its effects must be confronted head on. On the the-

oretical side, large Monte Carlo simulations by Guo, Bhatt and Huse (in three dimensions)

and Rieger and Young (in two dimensions) [3] have given us the first set of reliable results

on the novel properties of realistic quantum spin glasses.

To begin, what is a spin glass ? Spin glasses are formed by placing a magnetic ion, like

manganese or europium, at random positions in a non-magnetic host metal (e.g. silver) or

insulator (e.g. strontium sulfide). The exchange interactions between the magnetic moments

(or ‘spins’) are such that the energy is not minimized by a simple, regular, arrangement of the

spin orientations, as it is in a ferromagnet or antiferromagnet. Rather, at low temperatures

such materials often enter the spin glass phase, in which the spins freeze into a complicated

random configuration. The choice of the particular configuration in a given sample depends

upon all the details of the random arrangement of magnetic ions present. Experimentally,

the onset of spin glass order is most easily determined by the presence of a cusp in the

temperature dependence of the linear spin susceptibility, and a divergence of the non-linear

susceptibility at the same temperature.

The conventional choice for moving a sample out of the spin glass phase has been to

raise the temperature. The increasing thermal agitation of the spins eventually causes them

to lose the long-time memory of the particular orientation they had chosen in the spin

glass. However, the price for this choice is that close enough to the transition the behavior

of the system becomes classical. The reason for this may be understood most clearly by

thinking about the approach to the spin glass state from higher temperatures. As one

lowers the temperature, the spins start to build in mutual correlations over a temperature-
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dependent length scale, ξ. The onset of spin glass order occurs at the point where ξ diverges,

corresponding to correlations in the spin orientation over the entire sample. With a large ξ,

the important fluctuations of the spins involve fine rearrangements of the spins at distances

on the order of ξ, and these occur rather sluggishly with a frequency, ω, which should go

to zero as ξ diverges. Close enough to the transition then, the system will always satisfy

h̄ω � kBT . Under this condition the coupling of the spins to the thermal heat bath causes

an almost complete loss of quantum coherence, and the system behaves classically.

To avoid this almost ubiquitous phenomenon, the Rosenbaum group used a different

mechanism to destroy the spin glass phase. First they chose a material (LiHo0.167Y0.833F4,

with Ho being the magnetic ion) with a strong spin-orbit coupling between the spins and

the underlying crystal - this coupling essentially restricts the spins to orient either parallel

or anti-parallel to a specific crystalline axis; such spins are usually referred to as Ising spins.

Then they applied a transverse magnetic field, oriented perpendicular to the preferred axis.

The transverse field continually induces flips of the Ising spins, and is thus clearly detrimen-

tal to the spin glass phase. (The flipping effect of the transverse field is similar to that of

the transverse field in a spin-resonance experiment.) A large enough transverse field will

eventually destroy the spin glass order, even at the absolute zero temperature. The phase

transition at absolute zero must necessarily be quantum mechanical, as there is no heat bath

to destroy quantum coherence. At small, but non-zero, temperatures, the considerations

outlined above allow one to deduce the phase diagram sketched in the figure; Γ is a parame-

ter measuring the strength of the quantum fluctuations, and is proportional to the transverse

field. Close enough to the spin glass transition at any non-zero temperature, classical fluctu-

ations always take over; however the region of classical behavior becomes vanishingly small

as the temperature goes to zero.

An essential ingredient in understanding quantum spin glasses is the determination of the

properties of the quantum critical point at Γ = Γc and T = 0, beyond which spin glass order

disappears. This point describes a phase transition driven purely by quantum fluctuations.

The response of the quantum-critical point to a small temperature and Γ−Γc, will determine

the location of the quantum-to-classical crossover, and of various other crossovers within the

quantum regime (not shown in the figure). A specially interesting regime should appear

when T 6= 0 and Γ ≈ Γc, when the typical relaxational frequency, ω is expected to satisfy

h̄ω ≈ kBT , indicating the quantum nature of the dissipative processes; this regime has not

yet been experimentally accessed.

Analytic theories of the quantum critical point have so far appeared only for simplified,
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and rather unrealistic models: models with infinite-range exchange interactions [4], and

models with spins arranged along a single line [5]. The Monte Carlo results of Guo et.al and

Rieger et. al. therefore give us our first opportunity to confront theory and experiment. The

result of this is rather disappointing (or not, depending upon one’s point of view) as major

discrepancies immediately become apparent. In particular, the non-linear susceptibility has

a much stronger divergence at the quantum critical point in the simulations, than appears

to be the case experimentally.

Given the many years it took to disentangle the complicated phenomenology of classical

spin glasses, the present state of affairs in the quantum regime should not be too surprising.

It is abundantly clear that some fascinating physics remains to be unraveled, and theorists

and experimentalists will keep each other busy for some time.
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Figure 1: Schematic phase diagram of a quantum spin glass. Γ is a parameter measuring
the strength of quantum fluctuations. Low frequency, long-wavelength phenomena in the
shaded region are classical. The remainder of the region near Γ = Γc and T = 0 requires a
full quantum theory.
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